Problem (Will's Birthday Problem a.k.a. 2016 AIME I \#6): In $\triangle A B C$ let I be the center of the inscribed circle, and let the bisector of $\angle A C B$ intersect $A B$ at L. The line through C and L intersects the circumscribed circle of $\triangle A B C$ at the two points C and D. If $L I=2$ and $L D=3$, then $I C=\frac{p}{q}$, where p and q are relatively prime positive integers. Find $p+q$.

Solution (Andrew Paul with guidance from Bill Li): This problem is difficult but only because it requires an Olympiad lemma.

Lemma (Incenter-Excenter Lemma): Let $\triangle A B C$ have incenter I, A-excenter I_{A}, and denote by L the midpoint of arc $B C$. Then, L is the center of a circle through I, I_{A}, B, and C.

This is shown by angle-chasing. By the Incenter-Excenter Lemma, we have $D A=D B=D I=$ $2+3=5$. Next, we observe that since $\angle A L C=\angle D L B$ and $\angle B A C=\angle B D C$ (since $A C B D$ is cyclic), we have $\triangle A C L \sim \triangle D B L$, from which it follows:

$$
\frac{A C}{A L}=\frac{D B}{D L}=\frac{5}{3}
$$

Now we apply the angle-bisector theorem to $\triangle A C L$ at $\angle C A L$:

$$
\frac{A C}{C I}=\frac{A L}{L I}
$$

Upon rearrangement, we have:

$$
\frac{C I}{L I}=\frac{A C}{A L} \Rightarrow \frac{C I}{2}=\frac{5}{3} \Rightarrow C I=\frac{10}{3}
$$

$10+3=\boxed{13}$ and we are done.

Happy Birthday Will :)

