The Vandermonde Convolution and Generalized Binomial Coefficients

Andrew Paul
12/27/2017

Theorem (Vandermonde Convolution):

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}
$$

We present two proofs - an algebraic proof and a combinatorial proof (via bijection).
Proof 1: Consider the binomial expansion of $(x+1)^{m+n}$:

$$
(x+1)^{m+n}=\sum_{k=0}^{m+n}\binom{m+n}{k} x^{m+n-k}=\binom{m+n}{0} x^{m+n}+\binom{m+n}{1} x^{m+n-1}+\ldots+\binom{m+n}{m+n}
$$

However, we can also evaluate the expansion as the product of two different binomial expansions:

$$
(x+1)^{m+n}=(x+1)^{m}(x+1)^{n}=\left(\sum_{i=0}^{m}\binom{m}{i} x^{m-i}\right)\left(\sum_{j=0}^{n}\binom{n}{j} x^{n-j}\right)
$$

Writing out the latter term by term:

$$
(x+1)^{m+n}=\left(\binom{m}{0} x^{m}+\binom{m}{1} x^{m-1}+\binom{m}{2} x^{m-2}+\ldots+\binom{m}{m}\right)\left(\binom{n}{0} x^{n}+\binom{n}{1} x^{n-1}+\binom{n}{2} x^{n-2}+\ldots+\binom{n}{n}\right)
$$

Now we distribute:

$$
(x+1)^{m+n}=\binom{m}{0}\binom{n}{0} x^{m+n}+\left[\binom{m}{0}\binom{n}{1}+\binom{m}{1}\binom{n}{0}\right] x^{m+n-1}+\ldots+\binom{m}{m}\binom{n}{n}
$$

Comparing the coefficients of this expansion with our first expansion yields:

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}
$$

As desired.

The bijective proof is far prettier (as is the case for virtually all combinatorial identities).
Proof 2: Consider a committee of r people that is to be formed from a group of $m+n$ candidates consisting of m men and n women. The number of ways such a committee could be formed is clearly $\binom{m+n}{r}$. Call the set of these committees formed A (so that $|A|=\binom{m+n}{r}$).

Alternatively, consider the committees formed by choosing k men from the group of $m+n$ candidates and $r-k$ women. For a given k, this is $\binom{m}{k}\binom{n}{r-k}$. We may sum this over all possible k to obtain a set of committees B such that $|B|=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}$. Since $f: A \rightarrow B$ is a bijection, we must have:

$$
|A|=|B|
$$

or:

$$
\binom{m+n}{r}=\sum_{k=0}^{r}\binom{m}{k}\binom{n}{r-k}
$$

As desired.
Interestingly, Pascal's Identity and the Hockey-Stick Identity can be derived from the Vandermonde Convolution. However, to do so, we must first introduce the generalized binomial coefficient:

$$
\binom{\lambda}{k}=\prod_{r=0}^{k-1} \frac{\lambda-r}{k-r}
$$

Here we have $k \in \mathbb{N}$ but not only can we have $\lambda \in \mathbb{C}$ but λ can be an element of any commutative ring where all positive integers are invertible (thanks Wikipedia for this cool fact!) ${ }^{1}$ We first prove Pascal's Identity:

Proof 3: We simply expand $\binom{n+1}{j+1}$ using the Vandermonde Convolution, letting $n=1$ and $r=j+1$, and notice that the first j terms are 0 when we use generalized binomial coefficients:

Hence:

$$
\binom{n+1}{r+1}=\binom{n}{r}+\binom{n}{r+1}
$$

[^0]As desired.
The Hockey-Stick Identity follows. This goes to show that combinatorial identities - and identities in general - don't underlie other more "complicated" identities. Instead, all identities are simultaneously true by virtue of mutual existence.

[^0]: ${ }^{1}$ I think they are just referring to commutative rings where $\forall n \in \mathbb{N}, \exists!x: x+n=0$, though rings are super abstract so I wouldn't be surprised if \exists is sufficiently strong.

