A Second Order Linear ODE

Andrew Paul

8/9/2019

Consider the homogeneous ODE

$$
\ddot{x}-K x=0 .
$$

How do we solve this equation? Observe that

$$
\begin{aligned}
\ddot{x} & =\frac{\mathrm{d} \dot{x}}{\mathrm{~d} t} \\
& =\frac{\mathrm{d} \dot{x}}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} t} \\
& =\dot{x} \frac{\mathrm{~d} \dot{x}}{\mathrm{~d} x}
\end{aligned}
$$

Hence, we can perform a separation,

$$
\int \dot{x} \mathrm{~d} \dot{x}=\int K x \mathrm{~d} x,
$$

which becomes

$$
\dot{x}=\sqrt{K x^{2}+C_{1}} .
$$

We chose the principal square root, WLOG. It becomes evident that the choice of root does not change the general solution. We may separate again to obtain,

$$
I=\int \frac{\mathrm{d} x}{\sqrt{K x^{2}+C_{1}}}=t+C_{2} .
$$

Now let us compute the integral I. Let $x=\sqrt{\frac{C_{1}}{K}} \tan \theta$. Then, $\mathrm{d} x=\sqrt{\frac{C_{1}}{K}} \sec ^{2} \theta \mathrm{~d} \theta$, and the integral becomes

$$
\begin{aligned}
I & =\frac{1}{\sqrt{K}} \int \sec \theta \mathrm{~d} \theta \\
& =\frac{1}{\sqrt{K}} \log (\sec \theta+\tan \theta) \\
& =\frac{1}{\sqrt{K}} \log \left(x \sqrt{\frac{K}{C_{1}}}+\sqrt{1+\frac{K}{C_{1}} x^{2}}\right) .
\end{aligned}
$$

Hence, we have

$$
\frac{1}{\sqrt{K}} \log \left(x \sqrt{\frac{K}{C_{1}}}+\sqrt{1+\frac{K}{C_{1}} x^{2}}\right)=t+C_{2}
$$

After a lot of algebraic manipulation, we obtain

$$
x=\frac{e^{C_{2} \sqrt{K}}}{2 K} e^{t \sqrt{K}}-\frac{C_{1}}{2 e^{C_{2} \sqrt{K}}} e^{-t \sqrt{K}}
$$

Now if $K>0$, we are done. The solution is simply,

$$
x=A e^{t \sqrt{K}}+B e^{-t \sqrt{K}}
$$

for $A, B \in \mathbb{R}$. However, if $K<0$, as is the case in simple harmonic motion as given by Hooke's law, we need to make a few more observations.

First of all, the number $e^{C_{2} \sqrt{K}}$ becomes nonreal. Letting $\omega=\sqrt{|K|}$, it becomes the complex number $z=e^{i \omega C_{2}}$. The number $e^{-C_{2} \sqrt{K}}$ is then the conjugate, \bar{z}. Hence the solution to the differential equation can be written as

$$
\begin{aligned}
x & =\frac{e^{C_{2} \sqrt{K}}}{2 K} e^{t \sqrt{K}}-\frac{C_{1}}{2 e^{C_{2} \sqrt{K}}} e^{-t \sqrt{K}} \\
& =\frac{z}{2 K} e^{i \omega t}-\frac{C_{1} \bar{z}}{2} e^{-i \omega t} \\
& =A e^{t \sqrt{K}}+B e^{-t \sqrt{K}} \\
& =A e^{i \omega t}+B e^{-i \omega t}
\end{aligned}
$$

where this time $A, B \in \mathbb{C}$. What are the ramifications of this? We apply Euler's formula, $e^{i \theta}=$ $\cos \theta+i \sin \theta$ to expand the solution:

$$
A e^{i \omega t}+B e^{-i \omega t}=A \cos \omega t+A i \sin \omega t+B \cos \omega t-B i \sin \omega t=(A+B) \cos \omega t+(A-B) i \sin \omega t
$$

Note that we also applied the even and odd properties of cosine and sine, respectively.
Since we are seeking real-valued solutions, we need a way to resolve all imaginary terms in our solution such that they vanish. Suppose that $A=p+q i$ and $B=r+s i$. For $A+B \in \mathbb{R}$, we must have $q+s=0$ or $q=-s$. Furthermore, for $(A-B) i \in \mathbb{R}$, we must have $p-r=0$ or $p=r$. Therefore, for a real solution, we must have $A=\bar{B}$.

We have previously defined $A=\frac{z}{2 K}$ and $B=\frac{C_{1} \bar{z}}{2}$. Since these must be conjugates, we can obtain:

$$
\frac{C_{1} \bar{z}}{2}=\overline{\left(\frac{z}{2 K}\right)} \Rightarrow C_{1}=\frac{1}{K} .
$$

This is an interesting condition. Only a particular constant of integration following our first separation of variables allows for a real-valued solution when $K<0$. We conclude that the solution for
$K<0$ is of the form:

$$
x=A e^{t \sqrt{K}}+\bar{A} e^{-t \sqrt{K}}
$$

for $A \in \mathbb{C}$. Our argument to show that $A=\bar{B}$ also paves the way to show that this solution is in fact sinusoidal. We can express the solution as:

$$
x=C \cos \omega t+D \sin \omega t
$$

where $C, D \in \mathbb{R}$. Condensing this into a single trigonometric function is trivial. It is simply

$$
\sqrt{C^{2}+D^{2}} \sin (\omega t+\phi)
$$

where $\phi=\arcsin \frac{C}{\sqrt{C^{2}+D^{2}}}$.
This is why motion under Hooke's law, simple harmonic motion, is sinusoidal.

