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Here are my solutions to the two problems that I managed to solve on the Putnam.

2019 A1: Determine all possible values of

A3 +B3 + C3 − 3ABC

where A, B, and C are nonnegative integers.

Solution: Let us denote the expression by f . First observe that by AM-GM,

A3 +B3 + C3

3
≥ 3
√
A3B3C3 ⇒ f ≥ 0,

so f must be nonnegative. f = 0 is obtained trivially by letting A = B = C = 0.

Now, let WLOG, A = B = n and C = n− 1 for some positive integer n, then,

f = 2n3 + (n− 1)3 − 3n2(n− 1)

= 2n3 + n3 − 3n2 + 3n− 1− 3n3 + 3n2

= 3n− 1,

so f can be any positive integer congruent to 2 modulo 3. Furthermore, setting WLOG A = B =

n− 1 and C = n, we obtain f = 3n− 2. So f can be 0 and any positive integer not divisible by 3.

Suppose that we have an f that is divisible by 3 Then, we must have,

f = A3 +B3 + C3 − 3ABC ≡ A3 +B3 + C3 ≡ A+B + C ≡ 0 (mod 3),

where in the last step, we apply the fact that for any integer n, we have n3 ≡ n (mod 3). This can

be shown by looking at all three possible residues modulo 3.

There are precisely four cases where A+B + C ≡ 0 (mod 3).

Case 1: (A,B.C) ≡ (0, 0, 0) (mod 3)

In this case, since all three variables have at least one factor of 3, their cubes must have at least

three factors of 3. Furthermore, the term 3ABC must have at least four factors of 3. Hence, we
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must have

f ≡ 0 (mod 9).

Case 2: (A,B,C) ≡ (1, 1, 1) (mod 3)

In this case, we can write A = 3x+ 1, B = 3y + 1, and C = 3z + 1 for x, y, z ∈ Z. Expanding

the expression for f , we see that every coefficient in the polynomial is divisible by 9. Hence, in this

case

f ≡ 0 (mod 9).

Case 3: (A,B,C) ≡ (2, 2, 2) (mod 3)

Similarly to the previous case, we let A = 3x + 2, B = 3y + 2, and C = 3z + 2 and see that

every coefficient in the expansion of f is divisible by 9, hence

f ≡ 0 (mod 9).

Case 4: (A,B,C) ≡ some permutation of (0, 1, 2) (mod 9)

In this case, WLOG let the permutation in consideration be (0, 1, 2). Then A3 is divisible by 9

by the argument made in the first case, and likewise 3ABC is divisible by 9 because it has at least

two factors of 3. Now we can write the remaining terms as

B3 + C3 = (B + C)(B2 + C2 −BC).

But B + C ≡ 1 + 2 ≡ 0 (mod 3) and B2 + C2 −BC ≡ 1 + 4− 2 ≡ 0 (mod 3). So B3 + C3 can be

factored into two integers which are themselves divisible by 3, hence B3 +C3 ≡ 0 (mod 9). Hence,

once again, in this case we have

f ≡ 0 (mod 9).

So we have shown that whenever f is a multiple of 3, it is also a multiple of 9. Now, we simply

let WLOG A = n, B = n−1, and C = n−2 for some integer n larger than 1. From this, we obtain

f = 9(n− 1), so we can construct every positive multiple of 9.

So f can be all nonnegative integers except for multiples of 3 which are not multiples of 9. �
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2019 B1: Denote by Z2 the set of all points (x, y) in the plane with integer coordinates. For

each integer n ≥ 0, let Pn be the subset of Z2 consisting of the point (0, 0) together with all points

(x, y) such that x2 + y2 = 2k for some integer k ≤ n. Determine, as a function of n, the number of

four-point subsets of Pn whose elements are the vertices of a square.

Solution: We denote the circle whose radius is k
2 as Ωk. Observe that for k < 0, Ωk is bounded

by the unit circle, Ω0, and there exists no lattice points in this region apart from the origin itself,

so no square will have a vertex on Ωk∀k < 0.

On the complex plane, the vertices of every square whose vertices are all on a single circle, Ωk,

can be written as

{2
k
2 eiθ, 2

k
2 ei(θ+

π
2

), 2
k
2 ei(θ+π), 2

k
2 ei(θ+

3π
2

)},

since the central angle of a square is π
2 .

Using Euler’s formula and the angle addition identities for sine and cosine, we can compute the

real and imaginary parts of each of these complex numbers. Let the above complex numbers be

{z1, z2, z3, z4}. Then,

<(z1) = 2
k
2 cos θ

=(z1) = 2
k
2 sin θ

<(z2) = 2
k
2 cos

(
θ +

π

2

)
= −2

k
2 sin θ

=(z2) = 2
k
2 sin

(
θ +

π

2

)
= 2

k
2 cos θ

<(z3) = 2
k
2 cos (θ + π) = −2

k
2 cos θ

=(z3) = 2
k
2 sin (θ + π) = −2

k
2 sin θ

<(z4) = 2
k
2 cos

(
θ +

3π

2

)
= 2

k
2 sin θ

=(z4) = 2
k
2 sin

(
θ +

3π

2

)
= −2

k
2 cos θ.

So if z1 is a Gaussian integer, then the other three complex numbers are as well. WLOG, let

0 ≤ θ ≤ π
2 .

For z1 to be a Gaussian integer, we must have 2
k
2 cos θ ∈ Z.

Case 1: k is even

Since the product of a rational number and a irrational number is irrational (given that both

numbers are nonzero), we must have that cos θ is rational. Suppose that cos θ = p
q , where p

q is

irreducible. For this real part to be an integer, q must be a divisor of 2
k
2 , as otherwise it would

leave some product of prime numbers in the denominator, and since gcd (p, q) = 1 (if p is nonzero),

we cannot remove these prime numbers by p. The divisors of 2
k
2 are all of the powers of 2 from 1

3



to 2
k
2 . So,

q ∈ {1, 2, ..., 2
k
2 }.

Now, we must also have that 2
k
2 sin θ, the imaginary part, is an integer. This is

=(z1) = 2
k
2 sin θ

= 2
k
2

√
1− cos2 θ

= 2
k
2

√
q2 − p2

q
.

Since q must be a factor of 2
k
2 , 2

k
2

q is an integer power of 2. Hence, we must have q2−p2 = `2

2j
, where

the fraction is fully reduced, for some `, j ∈ Z. In particular, we have that 0 ≤ j
2 ≤

k
2 − log2 q,

as otherwise, we divide away too many powers of 2 from 2
k
2 and end up with a non-integer.

Furthermore, j must be even so that
√
q2 − p2 is rational.

The equation rearranges to

2jq2 − 2jp2 = `2.

When j is positive, observe that the LHS is congruent to 0 modulo 4. But if `2 is congruent to 0

modulo 4, ` must be even, which contradicts the irreducibility of `2

2j
, unless ` = 0, in which case

p = q so cos θ = 1. We would then obtain the Gaussian integers at angles 0, π
2 , π, and 3π

2 , which

form a square.

When j = 0, we have q2 − p2 = `2. Then, we note that since q is an power of 2, we can write

this as

4s − p2 = `2

for some nonnegative integer s. If s = 0, then we must have p = 1 or p = 0 so that the irreducibility

of cos θ = p
q is not contradicted. Regardless of which of these two values we choose for p, we obtain

the same four complex numbers that we found in the previous case, namely those with arguments

of 0, π
2 , π, and 3π

2 . These form a square.

If s > 0, we have that −p2 ≡ `2 (mod 4). Since perfect squares are only congruent to 0 or 1

modulo 4, we must have that p2 ≡ 0 (mod 4), so p is even. The only even p that does not break

the irreducibility condition of p
q is p = 0, which as before, yields the square with vertices at the

complex numbers with arguments 0, π
2 , π, and 3π

2 .

Hence, we can only have p = 0 so cos θ = 0. This means, when k is even, there exists only one

square whose vertices are all on Ωk, namely at angles 0, π
2 , π, and 3π

2 .

Case 2: k is odd

In this case, the radius of Ωk is 2
k−1
2

√
2. So, for the real part of z1 to be an integer, we must

have cos θ = 1√
2
· pq where 2

k−1
2 · pq is an integer, and p

q is irreducible. Similarly to the even case, we

must have

q ∈ {1, 2, ..., 2
k−1
2 }.
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Now, the imaginary part of z1 is

=(z1) = 2
k
2 sin θ

= 2
k
2

√
1− cos2 θ

= 2
k−1
2

√
2q2 − p2

q
.

Once again, we can write 2q2 − p2 = `2

2j
, for a nonnegative even j and an integer ` such that `2

2j
is

irreducible.

When j > 0, we have

2j+1q2 − 2jp2 = `2,

The LHS is congruent to 0 modulo 4 but `2 is congruent to 0 modulo 4, ` must be even, which

contradicts the irreducibility of `2

2j
unless ` = 0. If ` = 0, we obtain cos θ = 1, but this does not

yield a Gaussian integer since 2
k
2 is not an integer for odd k.

When j = 0, we have 2q2 − p2 = `2. Since q = 2s for some nonnegative integer s, we have

22s+1 − p2 = `2.

When s = 0, we have p2 + `2 = 2. Since we have q = 1, the only possible values of p are 0 or 1,

since any other values of p would cause cos θ to exceed 1. We find that p = q = 1 yields a valid

perfect square `2 = 1. When p = q, we have cos θ = sin θ = 1√
2
. So we have the complex numbers

on Ωk with arguments π
4 , 3π

4 , 5π
4 , and 7π

4 . This forms a square.

When s 6= 0, we have that −p2 ≡ `2 (mod 4). Since squares are only congruent to 0 or 1

modulo 4, we must have that p2 ≡ 0 (mod 4) so p is even. The only p that is even that does not

contradict the irreducibility of pq is p = 0, but this gives us the same complex numbers we discussed

in a previous case. They are not Gaussian integers.

Hence, we can only have p = q, so cos θ = 1√
2
. This means, when k is odd, there exists only one

square whose vertices are all on Ωk, namely at angles π
4 , 3π

4 , 5π
4 , and 7π

4 .

Due to the arrangement of the lattice points on adjacent circles (they alternate between the

even and odd orientations), we can show by geometric arguments that we cannot form a square

with two vertices on one circle and two vertices on another.

We can, however, form squares taking the origin, two lattice points on Ωk and a lattice point

on Ωk+1 for nonnegative k < n. These configurations exist since the radius of Ωk, satisfies the

recurrence

Rk+1 = Rk
√

2.

This is exactly the factor we multiply the side length of a square by to obtain its diagonal. Fur-

thermore, the angles formed between the side length that is the radius on Ωk and the diagonal

which is the radius on Ωk is exactly π
4 due to the angles that we have computed previously. The

two possible configurations are shown below.

5



Ωk

Figure 1: The configuration when k is even

Ωk

Figure 2: The configuration when k is odd

Hence, each circle Ωk from k = 0 to k = n − 1 contributes exactly 5 squares and the circle Ωn
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contributes only one square, since there is no circle beyond it to take points from. So the answer

is 5n+ 1 .
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