
Chapter 1

Statics

3. Motionless chain *
A frictionless surface is in the shape of a function which has its endpoints at the same height but is

otherwise arbitrary. A chain of uniform mass per unit length rests on this surface, from end to end. Show
that the chain will not move.

Solution: Suppose that the function is f(x), over the interval [a, b]. We are given f(a) = f(b). Let
the chain have a linear mass density, dm

d` = λ. Then, the force an infinitesimally small section of chain
experiences down the slope is:

dF = λg sin θ d`,

where θ is the angle of inclination the tangent to f makes at a particular x. Observe that:

d` =
√

(dx)2 + (df)2 =
√

1 + f ′(x)2 dx.

Furthermore, θ = arctan f ′(x) so sin θ = f ′(x)√
1+f ′(x)2

. Hence, we have:

dF = λgf ′(x) dx,

so the net force on the rope is given by:

F =

∫
dF = λg

∫ b

a

f ′(x) dx = λg[f(b)− f(a)] = 0,

as desired. �

4. Keeping the book up
A book of mass M is positioned against a vertical wall. The coefficient of friction between the book and

the wall is µ. You wish to keep the book from falling by pushing on it with a force F applied at an angle
theta to the horizontal (−π/2 < θ < π/2). For a given θ, what is the minimum F required? What is the
limiting value θ for which there exists an F which will keep the book up?

Solution: The normal force on the book is F cos θ, hence the force of friction on the book is µF cos θ.
The force upwards that you exert on the book is F sin θ. These two forces must cancel weight in equilibrium.
Hence, the least force F that keeps the system in equilibrium satisfies:

µF cos θ + F sin θ = mg,

or:

F =
mg

sin θ + µ cos θ
.
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Such an F may become arbitrarily large. It becomes infinite when:

sin θ + µ cos θ = 0⇒ θ = − arctanµ.

�

5. Objects between circles **
Each of the following planar objects is placed, as shown in Fig. 1, between two frictionless circles of

radius R. The mass density of each object is σ, and the radii to the points of contact make an angle θ with
the horizontal. For each case, find the horizontal force that must be applied to the circles to keep them
together. For what θ is this force maximum or minimum?

(a) An isosceles triangle with common side length L.

(b) A rectangle with height L.

(c) A circle.

Figure 1.1: Problem 5

Solution: This is simply a geometry problem.

(a) Using geometry, we find that the vertex angle of the isosceles triangle must be 2θ. Hence, the area of
the triangle is 1

2L
2 sin 2θ and the weight of the triangle is 1

2σgL
2 sin 2θ. Each circle exerts a vertical

force of F = N cos θ on the triangle, where N is the normal force, hence:

2N sin θ =
1

2
σgL2 sin 2θ.

This reduces to:

F =
1

2
σgL2 cos2 θ ,

which is 0 for θ = π
2 and increases as θ decreases. �

(b) Geometry reveals that the width of the rectangle must be 2R(1− cos θ). Therefore, the weight of the
rectangle is 2σgRL(1− cos θ). Therefore:

2N sin θ = 2σgRL(1− cos θ).

This yields:

F = σgRL(1− cos θ) cot θ .

The derivative of this function is:

F ′ = σgRL
(
sin θ cot θ − (1− cos θ) csc2 θ

)
.
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Setting this equal to 0, we find:

cos θ =
1− cos θ

1− cos2 θ
,

or:
cos3 θ − 2 cos θ + 1 = 0,

which factors as:
(cos θ − 1)(cos2 θ + cos θ − 1) = 0.

The quadratic factor yields:

cos θ =
−1±

√
5

2
.

And due to the range of cosine, the only viable solution is θ = arccos −1+
√
5

2 . This is where the force

required is maximized. Incidentally, this angle is equal to arccosϕ where ϕ = −1+
√
5

2 is the golden
ratio. �

(c) Applying the Law of Sines on the triangle whose vertices are the centers of the three circles, we find that
the radius of the third circle is r = R(sec θ − 1). Hence, the weight of that circle is σgπR2(sec θ − 1)2.
Therefore:

2N sin θ = σgπR2(sec θ − 1)2,

and:

F =
1

2
σgπR2(sec θ − 1)2 cot θ .

L’hopital’s rule shows that limθ→0 F = 0. F also diverges as θ → π
2 . �

16. Leaning sticks and circles **
A large number of sticks (of mass per unit length ρ) and circles (of radius R) lean on each other, as

shown in Fig. 2. Each stick makes an angle θ with the ground. Each stick is tangent to a circle at its upper
end. The sticks are hinged to the ground, and every other surface is frictionless. In the limit of a very large
number of sticks and circles, what is the normal force between a stick and the circle it rests on, very far to
the right? (Assume that the last circle is glued to the floor, to keep it from moving.)

Figure 1.2: Problem 16

Solution: Consider the nth stick. Let the force that the nth stick exerts on the nth circle be Fn. Let
the force that the nth stick exerts on the (n − 1)th be Gn (with obviously G1 = 0). The torque that Fn
exerts on the nth stick about the hinge is thus simply Fn` where ` is the length of the stick, since the stick
is tangential to the circle.

The moment arm of the torque by Gn is more complicated. Let it be A. Then, the torque on the nth

stick about the hinge by Gn is AGn.
The moment arm of the torque by gravity (weight) is simpler. Since gravity is vertical, the angle it makes

with the stick is 90◦−θ. Since ρ is constant, the center of mass of the stick is a distance of `
2 from the hinge.

The moment arm of the torque by gravity is thus 1
2` cos θ. It follows that the torque due to gravity on every

stick is 1
2ρg`

2 cos θ.
Balancing the torques on the nth stick:

1

2
ρg`2 cos θ +AGn − Fn` = 0.

Now we turn to geometry. We label the configuration as follows.
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Figure 1.3: Problem 16 Diagram

Let Y Z be the nth stick and WX be the (n − 1)th stick. Let O be the center of the (n − 1)th circle.
Suppose Y Z is tangential to the circle centered at O at B. Let the foot of the altitude from B to the ground
be D. Let the point of tangency between the ground and the circle centered at O be C. Let J be foot of
the altitude from B to OC. Let Q be the foot of the altitude from X to the ground. Let P be the foot of
the altitude from O to OX.

Since ∠OXW = ∠OCW = 90◦, we must have θ + ∠COX = 180◦. Since ∠OCY = ∠OBY = 90◦, we
must have ∠BOC + 180◦ − θ = 180◦, so ∠BOC = θ. Now we have ∠COX + ∠BOC = 180◦, so X, O, and
B are collinear. It follows that ∠POX = 90◦ − θ and so ∠OXP = θ.

For the (n−1)th circle to remain in equilibrium, all lateral forces must cancel. Hence Fn−1 sin θ = Gn sin θ.
This yields:

Fn−1 = Gn.

Next, we compute `. We have XP = R cos θ, PQ = OC = R, CW = WX = ` and QC = OP = R sin θ.
Therefore, by the Pythagorean theorem on 4WXQ:

`2 = (`−R sin θ)2 + (R+R cos θ)2

= `2 − 2R` sin θ +R2 sin2 θ +R2 + 2R2 cos θ +R2 cos2 θ

= `2 − 2R` sin θ + 2R2 cos θ + 2R2

This yields:

` =
R(1 + cos θ)

sin θ
.

Now we compute A, the moment arm of Gn. In particular, A = BY . Observe that BD = JC = R−R cos θ.
Hence, by looking at 4BDY , we obtain:

A = BY =
R(1− cos θ)

sin θ
,

therefore, our very first equation, balancing torques, becomes:

1

2
ρg

[
R2(1 + cos θ)2

sin2 θ

]
cos θ + Fn−1

[
R(1− cos θ)

sin θ

]
− Fn

[
R(1 + cos θ)

sin θ

]
= 0.

Now suppose L = limn→∞ Fn. Then:

1

2
ρg

[
R2(1 + cos θ)2

sin2 θ

]
cos θ + L

[
R(1− cos θ)

sin θ

]
− L

[
R(1 + cos θ)

sin θ

]
= 0,

which simplifies to:

L =
1

4
ρgR

[
(1 + cos θ)2

sin θ

]
.
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17. Balancing the stick **
Given a semi-infinite stick (that is, one that goes off to infinity in one direction), find how its density

should depend on position so that it has the following property: if the stick is cut at an arbitrary location,
the remaining semi-infinite piece will balance on a support located a distance b from the end.

Solution: Let the stick start at x = 0 and extend infinitely in the positive x direction. Let the desired
density function be λ(x). Suppose the stick is cut at x = c. Then the pivot placed a distance b from the end
will separate the stick into a finite interval of [c, b+ c) and an infinite interval of (b+ c,∞). Since we require
the stick to be in equilibrium, the torques about the pivot must cancel:∫ b+c

c

λ(x)(b+ c− x) dx =

∫ ∞
b+c

λ(x)(x− b− c) dx,

which rearranges to: ∫ ∞
c

λ(x)(b+ c− x) dx = 0.

This is a linear Volterra equation of the first kind. To solve it, we differentiate WRT c. Using the Leibniz
integral rule, and assuming that λ(x) is sufficiently well-behaved, we may write:∫ ∞

c

λ(x) dx = bλ(c).

Suppose M ′(x) = λ(x). Then:
lim
R→∞

M(R)−M(c) = bλ(c).

Let L = limR→∞M(R). Then:

M ′(c) +
1

b
M(c) =

L

b
.

This is a first-order linear ODE. We apply an integrating factor of exp
∫

1
b dc. After a change of variables,

this yields:
M(x) = L+ Ce−x/b.

Differentiating this, we conclude:

λ(x) = Ce−x/b .

For C > 0.

18. The spool **
A spool consists of an axis of radius r and an outside circle of radius R which rolls on the ground. A

thread which is wrapped around the axis is pulled with a tension T .

(a) Given R and r, what angle, θ, should the thread make with the horizontal so that the spool does not
move. Assume there is large enough friction between the spool and ground so that the spool doesn’t
slip.

(b) Given R, r, and a coefficient of friction µ between the spool and ground, what is the largest T can be
(assuming the spool doesn’t move)?

(c) Given R and µ, what should r be so that the upper bound on T found in part (b) is as small as possible
(assuming the spool doesn’t move)? What is the resulting value of T?
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Figure 1.4: Problem 18

Solution: This is similar to Problem 13 in the 2011 F = ma.

(a) There must be (static) friction, Ff , at the contact point between the ground and the wheel. For
equilibrium to exist, this friction must cancel the horizontal component of tension. Hence, Ff = T cos θ.
The torques must also sum to zero, hence:

TR cos θ = Tr,

hence the desired angle is θ = arccos
r

R
.

(b) The normal force that the spool experiences is given by:

N = mg − T sin θ,

where m is the mass of the spool. Hence, the force of friction, which we have shown is T cos θ, is limited
by:

T cos θ ≤ µ(mg − T sin θ).

This rearranges to:

T ≤ µmg

cos θ + µ sin θ
.

Since cos θ = r
R , we must have sin θ = 1

R

√
R2 − r2, hence:

T ≤ µmgR

r + µ
√
R2 − r2

.

(c) The denominator of the upper bound can be condensed into a single sinusoidal function with amplitude√
1 + µ2. It follows immediately that the least upper bound of T is

µmgR√
1 + µ2

. Condensing the

denominator:

cos θ + µ sin θ =
√

1 + µ2

(
cos θ · 1√

1 + µ2
+ sin θ · µ√

1 + µ2

)
.

Let sinα = 1√
1+µ2

. Then cosα = µ√
1+µ2

. Then the above equation becomes:

cos θ + µ sin θ = sinα cos θ + sin θ cosα = sin (α+ θ).

We wish for this to equal unity, hence:

α+ θ =
π

2
,

or:
θ =

π

2
− α.

Taking the cosine of both sides:
r

R
= sinα =

1√
1 + µ2

.

Hence, we conclude that the r that makes this possible is r =
R√

1 + µ2
.
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Chapter 2

Using F = ma

1. Sliding down a plane **

(a) A block slides down a frictionless plane from the point (0, y) to the point (b, 0), where b is given. For
what value of y does the journey take the shortest time? What is this time?

(b) Answer the same questions in the case where there is a coefficient of kinetic friction, µ, between the
block and the plane.

Solution:

(a) The angle of inclination of the plane is given by θ = arctan y
b . The acceleration of the block down the

plane is given by g sin θ. The distance it must traverse is given by the Pythagorean theorem,
√
b2 + y2.

Therefore, by kinematics,

1

2
g∆t2 sin θ =

√
b2 + y2 ⇒ ∆t =

√
2
√
b2 + y2

g sin θ
.

Using Pythagorean identities, we find that sin θ = y√
b2+y2

, hence

∆t =

√
2(b2 + y2)

gy
.

The square root function is monotonically increasing so it suffices to minimize b2

y + y. By AM-GM,

b2

y
+ y ≥ 2b.

And equality occurs when b2

y = y or y = b . It follows that the minimal time is:

min ∆t =

√
2

g
· 2b = 2

√
b

g
.

(b) We repeat the same calculation, but note that the acceleration of the block down the plane is now
g sin θ − µg cos θ due to friction. Hence,

∆t =

√
2
√
b2 + y2

g(sin θ − µ cos θ)
=

√
2

g

(
b2 + y2

y − µb

)
,
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so it suffices to minimize b2+y2

y−µb . Setting the derivative equal to 0:

2y(y − µb)− b2 − y2 = 0⇒ y2 − 2µby − b2 = 0.

The roots of this quadratic are y = b
(
µ±

√
µ2 + 1

)
. Since y > 0, the minimum must occur at

y = b
(
µ+

√
µ2 + 1

)
. Observe that when µ = 0, this yields y = b as desired. Plugging this in to find

the minimal time, we have,

min ∆t = 2

√
b

g

(
µ+

√
µ2 + 1

)
.

Observe that when µ = 0, this reduces to what we found in (a).

Atwood’s machine **

(a) A massless pulley hangs from a fixed support. A string connecting two masses, M1 and M2, hangs
over the pulley. Find the accelerations of the masses.

(b) Consider now the double-pulley system with masses M1, M2, and M3. Find the accelerations of the
masses.

Figure 2.1: The double-pulley system

Solution:

(a) Suppose WLOG that M2 ≥ M1. Since the string is inelastic, the tension is equal at both ends of the
string and the accelerations of both masses must be equal in magnitude. That is,

M2g − T
M2

=
T −M1g

M1
,

where T is the tension in the string. This yields T = 2M1M2g
M1+M2

. The acceleration of the masses is then

T −M1g

M1
=

(M2 −M1)g

M1 +M2
.

(b) Consider the forces on the second pulley (excluding the masses M2 and M3 attached to it). There is
one instance of T1, the tension in first Atwood system, acting upwards, and two instances of T2, the
tension in the second Atwood system, acting downwards. However, observe that the pulley itself is said
to be massless. By Newton’s Second Law the net force on it will always be 0, as otherwise the pulley
would have an infinite acceleration since limm→0

F
m =∞ for F > 0. In other words, T1 − 2T2 = 0, or

T2 =
1

2
T1.
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To gain an intuition for this, we consider what happens in the extreme case M2 + M3 → 0. In this
case, T2 = 0 as otherwise, the string in the second Atwood system would have an infinite acceleration.
It follows that T1 = 0. This makes sense physically, as M1 would simply be in free fall with the string
attached to it not held taut by any mass, hence not possessing any tension.

Now we continue our calculations with this in mind. Let a1 be the acceleration of the first Atwood
system and let a2 be the acceleration of the second Atwood system. WLOG, let M3 ≥M2. Then,

T −M1g = M1a1
T
2 −M2g = M2(a2 − a1)
M3g − T

2 = M3(a1 + a2)

where up is taken to be positive. From this system, we obtain:

a1 =
M1M2 +M1M3 − 4M2M3

M1M2 +M1M3 + 4M2M3
g,

a2 =
2M1M2 − 2M1M3

M1M2 +M1M3 + 4M2M3
g.

Hence, the acceleration of M2 is given by:

a2 − a1 =
3M1M3 −M1M2 − 4M2M3

M1M2 +M1M3 + 4M2M3
g ,

and the acceleration of M3 is given by:

a1 + a2 =
M1M3 + 4M2M3 − 3M1M2

M1M2 +M1M3 + 4M2M3
g .

Maximum length of trajectory ***
A ball is thrown at speed v from zero height on level ground. Let θ0 be the angle at which the ball should

be thrown so that the distance traveled through the air is maximum. Show that θ0 satisfies

1 = sin θ0 log

(
1 + sin θ0

cos θ0

)
.

(The solution is found numerically to be θ0 ≈ 56.5◦).

Solution: Let the ball be thrown at an arbitrary angle θ. Then the parametric equations of motion are{
y(t) = vt sin θ − 1

2gt
2

x(t) = vt cos θ.

Implicitizing these equations, we find that

y = x tan θ − g

2v2 cos2 θ
x2.

The nonzero root of this equation is v2 sin 2θ
g , which is the horizontal range of the ball. Therefore, the length

of the trajectory is given by

` =

∫ x1

x0

√
1 +

(
dy

dx

)2

dx =

∫ v2 sin 2θ
g

0

√
1 + (A+Bx)2 dx,
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where A = tan θ and B = − g
v2 cos2 θ . Let I be the indefinite integral. We perform the trigonometric

substitution A+Bx = tanα. This yields

I =
1

B

∫
sec3 α dα.

We proceed with integration by parts. Let J be the antiderivative of secant cubed. We let u = secα, so
du = secα tanα dα and dv = sec2 α dα so v = tanα. This gives us

J = secα tanα−
∫

secα tan2 α dα.

But since tan2 α = sec2 α− 1, we have

J = secα tanα− J +

∫
secα dα⇒ J =

1

2
[secα tanα+ log (secα+ tanα)] .

Hence, I = 1
2B [secα tanα+ log (secα+ tanα)]. Reversing our substitutions, this is

I =
1

2B

[
(A+Bx)

√
1 + (A+Bx)2 + log

(
A+Bx+

√
1 + (A+Bx)2

)]
.

Using the fundamental theorem of calculus, we obtain

` = −v
2 cos2 θ

2g
[− sec θ tan θ + log (sec θ − tan θ)− sec θ tan θ − log (sec θ + tan θ)]

= −v
2 cos2 θ

2g

[
log

(
sec θ − tan θ

sec θ + tan θ

)
− 2 sec θ tan θ

]
= −v

2 cos2 θ

2g

[
log

(
2

1 + sin θ
− 1

)
− 2 sec θ tan θ

]
.

The maximum value of ` occurs at a critical point. This θ0 is thus the root of the first derivative of ` WRT

θ. Since we will be setting the first derivative to 0, we can discard the constant − v
2

2g . This gives us

− sin 2θ0

[
log

(
2

1 + sin θ0
− 1

)
− 2 sec θ0 tan θ0

]
+ cos2 θ0

(
− 2 cos θ0

(1 + sin θ0)2
· 1

2
1+sin θ0

− 1
− 2 sec θ0 tan2 θ0 − 2 sec3 θ0

)

⇒ sin θ0 log

(
2

1 + sin θ0
− 1

)
− 2 tan2 θ0 + 1 + tan2 θ0 + sec2 θ0

⇒ sin θ0 log

(
2

1 + sin θ0
− 1

)
+ 2 = 0.

But, observe that

2

1 + sin θ0
− 1 =

(
1 + sin θ0
1− sin θ0

)−1
=

[
(1 + sin θ0)(1 + sin θ0)

(1− sin θ0)(1 + sin θ0)

]−1
=

(
1 + sin θ0

cos θ0

)−2
.

Hence, we have

−2 sin θ0 log

(
1 + sin θ0

cos θ0

)
+ 2 = 0⇒ sin θ0 log

(
1 + sin θ0

cos θ0

)
= 1 ,

as desired.
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