Problem (Textbook): Suppose a parabola is defined parametrically as

$$
\left\{\begin{array}{l}
x(t)=2 a t \\
y(t)=a t^{2}
\end{array}\right.
$$

For some constant $a \in \mathbb{R}$. Points P and Q are defined on such a parabola by parameters p and q respectively such that $(0,-a) \in \overleftrightarrow{P Q}$. If F is the focus of the parabola, show that $\frac{1}{F P}+\frac{1}{F Q}=\frac{1}{a}$.

Solution (Andrew Paul): First, we find the equation of $\overleftrightarrow{P Q}$. We are given $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$. Thus $m=\frac{a p^{2}-a q^{2}}{2 a p-2 a q}=\frac{p+q}{2}$. Hence, the (implicit) equation of the line is $y=\frac{1}{2}(p+q) x+b$. We note that $b=-a p q \Rightarrow y=\frac{1}{2}(p+q) x-a p q$. We are also given the y-intercept of this line $(0,-a)$. So we have $b=-a p q=-a \Rightarrow p q=1 \Rightarrow p=\frac{1}{q}$.

This means that we now have $Q\left(\frac{2 a}{p}, \frac{a}{p^{2}}\right)$. Now we implicitize the equations for the parabola. This gives us:

$$
y=\frac{x^{2}}{4 a}
$$

We can see easily now that the focus of this parabola lies at $F(0, a)$. It becomes clear that we can set up the distance formula many times to prove the statement $\frac{1}{F P}+\frac{1}{F Q}=\frac{1}{a}$. However, going just a few steps in, the algebra becomes incredibly complicated and messy.

Instead, let us prove the equivalent statement $a\left(d_{1}+d_{2}\right)=d_{1} d_{2}$ where $d_{1}=F P$ and $d_{2}=F Q$ without using the distance formula. To do so, we recall the definition of a parabola. It is the locus of points that is equidistant from a point (the focus) and a line (the directrix). In the context of our problem, this is a revelation! That is, d_{1} and d_{2} are not only $F P$ and $F Q$ respectively, but also the shortest distance between P and Q and the directrix respectively!

The directrix of our parabola is seen to be $y=-a$ (simply one focal length from the vertex at the origin but in the opposite direction from the focus). The length from P to this horizontal line is the sum of the absolute value of the y-coordinate of P and a. Thus:

$$
d_{1}=a p^{2}+a
$$

Similarly, working with $Q\left(\frac{2 a}{p}, \frac{a}{p^{2}}\right)$, we have:

$$
d_{2}=\frac{a}{p^{2}}+a
$$

We wish to show $a\left(d_{1}+d_{2}\right)=d_{1} d_{2}$, or:

$$
a\left(a p^{2}+2 a+\frac{a}{p^{2}}\right)=\left(a p^{2}+a\right)\left(\frac{a}{p^{2}}+a\right)
$$

Expanding both sides and simplifying gives us:

$$
a^{2} p^{2}+2 a^{2}+\frac{a^{2}}{p^{2}}=2 a^{2}+a^{2} p^{2}+\frac{a^{2}}{p^{2}}
$$

Which is trivially true for every allowed a, p. Q.E.D.

Fig 5.1: The surface in \mathbb{R}^{3} that describes all possible parabolas given the problem's parametric equations. The axis that would stretch out of the screen is the a-axis and cross-sections (by planes parallel to the screen representing constant a values) are the parabolas that result.

Fig 5.2: Another view of the manifold.

