Problem (Math StackExchange): $\triangle A B C$ has a right angle at A with D being the midpoint of $\overline{B C}$. A line through D meets $\overleftrightarrow{A B}$ at X and $\overline{A C}$ at Y. Let M be the midpoint of $\overline{X Y}$ and let P be the reflection of D across M. Let the foot of the altitude from P to $\overline{B C}$ be T. Prove that $\overline{A M}$ bisects $\angle T A D$.

Figure 1: Right angles and congruent segments are an angle-chaser's dream come true!
Solution (Andrew Paul): Let $\angle D A M=\alpha, \angle M A T=\beta$, and $\angle T A B=\gamma$. We wish to show $\alpha=\beta$.
We have three prominent right triangles so naturally we draw their circumcircles. Recall that the hypotenuse of a right triangle is a diameter of its circumcircle, hence D is the center of $(A B C)$. Now we have $A D=B D$, the radius of $(A B C)$, so $\triangle A B D$ is isosceles. Thus we have:

$$
\angle D A B=\angle A B D=\alpha+\beta+\gamma
$$

From this it follows that $\angle A C B=90^{\circ}-(\alpha+\beta+\gamma)$. We note that $A M=X M$, the radius of $(A X Y)$ so $\triangle A M Y$ is isosceles with:

$$
\angle M A Y=90^{\circ}-(\beta+\gamma)=\angle A Y M
$$

We also have $\angle D Y C=180^{\circ}-\angle A Y M=90^{\circ}+\beta+\gamma$. So:

$$
\angle C D Y=\angle M D T=180^{\circ}-(\angle D Y C+\angle A C B)=180^{\circ}-\left[90^{\circ}+\beta+\gamma+90^{\circ}-(\alpha+\beta+\gamma)\right]=\alpha
$$

Now $\angle M D T=\angle D T M=\alpha$ because $\triangle M D T$ is isosceles with congruent sides that are radii of (MDT).

We've chased α from $\angle D A M$ to $\angle D T M$ which is enough to imply that $M D A T$ is cyclic. Hence $\angle M A T=\angle M D T$ and $\alpha=\beta$ as desired.

Problem (Canada 1991/3): Let P be a point inside circle ω. Consider the set of chords of ω that contain P. Prove that the locus formed by the midpoints of these chords is a circle.

Figure 2: Here we let $X_{1}^{\prime} \in\{G, J\}$ and $X_{2}^{\prime} \in\{F, I\}$
Solution (Andrew Paul): We draw two special chords. Let $\overline{A B}$ be the chord containing P such that P is also the chord's midpoint. Now we draw the diameter of the circle that passes through P. The midpoint of the diameter is the center of ω which we will denote as O. From the conditions, it follows that O and P themselves must lie on the locus, which we will denote as ω^{\prime}.

Draw a third chord, $C D$, and let its midpoint be E. By SSS, we find that $\triangle O E C \cong \triangle O E D$ so $\angle O E C=\angle O E D=\frac{180^{\circ}}{2}=90^{\circ}$. It follows that if ω^{\prime} is a circle, $\omega^{\prime}=(P E O)$ and $\angle P E O=90^{\circ}$, so $\overline{O P}$ would be a diameter of ω^{\prime}.

Suppose $X \in \omega^{\prime} \backslash\{P, E, O\}$. For our result to be valid, P, E, O, and X must be concyclic. In other words, it suffices to show that $P E O X$ is cyclic. Let us define X_{1}^{\prime} as the endpoint of the chord with midpoint X that is on the same side of the circle as E WRT the diameter through P, and X_{2}^{\prime} as the other endpoint of the chord with midpoint X. We simply observe:

$$
\triangle O X X_{1}^{\prime} \cong \triangle O X X_{2}^{\prime} \Rightarrow \angle O X X_{1}^{\prime}=\angle O X X_{2}^{\prime}=90^{\circ}=\angle P E O
$$

So $P E O X$ is cyclic as desired.

