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We begin by defining an inertial frame of reference. This is simply a frame of reference from

which the particle being observed possesses no acceleration. For example, for a particle in free

fall, an inertial frame of reference would be that of the particle itself. Alternatively, one could also

consider the frame of reference of someone falling alongside the particle. Or for that matter, one

may consider the frame of reference of someone falling above or below the particle. As long as

both the particle and the frame are in free fall, subject to the same acceleration, the acceleration

between the frame and the particle itself is zero, hence that frame must be inertial.

This naturally leads us to define a non-inertial frame of reference as one that has an acceleration

relative to an inertial frame. These frames are not to be confused with frames that are moving at

constant velocities with respect to each other, thereby causing observed acceleration to be equivalent

across both frames. If a frame happens to be moving at constant velocity with respect to an inertial

frame, it too must also be an inertial frame.

While an observer in an inertial frame will measure an acceleration of zero, an observer in a

non-inertial frame will not, and to this observer, the particle under observation is under the effects

of what are referred to as fictitious forces. We will briefly derive one of these, known as the Coriolis

force (which causes the Coriolis effect), before moving on to discuss other problems of motion in

polar coordinates. These problems are pulled from exercises in Introductory Classical Mechanics

by David Morin.

We begin by considering a vector from the origin to a point with cartesian coordinates (x, y).

Such a vector, r, would take the form:

r = xx̂ + yŷ

= r cos θx̂ + r sin θŷ.

To compute the force on a particle at the position vector r, we must first find the acceleration

vector. This is the second time derivative of r. We take the first derivative, denoting derivatives

with Newton’s notation:

ṙ = (ṙ cos θ − rθ̇ sin θ)x̂ + (ṙ sin θ + rθ̇ cos θ)ŷ.

Note that we use the fact that ˙̂x = ˙̂y = 0, because x̂ and ŷ are standard basis vectors, and thus
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constant. Taking another derivative:

r̈ = (r̈ cos θ − 2ṙθ̇ sin θ − rθ̈ sin θ − rθ̇2 cos θ)x̂ + (r̈ sin θ + 2ṙθ̇ cos θ + rθ̈ cos θ − rθ̇2 sin θ)ŷ.

We find that the acceleration vector takes on a much more natural form if we use polar standard

basis vectors, rather than Cartesian. The construction is shown here:

Figure 1: This diagram from Introductory Classical Mechanics shows the construction of the polar

standard basis vectors.

This construction is quite intuitive. We want the vectors point in the directions in which a

particle would move when subjected to a slight change in the parameter associated to them. By

simple geometry, our construction implies:

r̂ = cos θx̂ + sin θŷ,

θ̂ = − sin θx̂ + cos θŷ.

Incidentally, observe that:
∂r̂

∂θ
= θ̂,

which makes sense since we wish for θ̂ to be the direction in which the position vector will change

when subjected to a slight change in angle.

Now we observe that we may rewrite r̈ as:

r̈ = (r̈ cos θ − 2ṙθ̇ sin θ − rθ̈ sin θ − rθ̇2 cos θ)x̂ + (r̈ sin θ + 2ṙθ̇ cos θ + rθ̈ cos θ − rθ̇2 sin θ)ŷ

= (r̈ cos θ − rθ̇2 cos θ)x̂ + (r̈ sin θ − rθ̇2 sin θ)ŷ − (2ṙθ̇ sin θ + rθ̈ sin θ)x̂ + (2ṙθ̇ cos θ + rθ̈ cos θ)ŷ

= (r̈ − rθ̇2)[cos θx̂ + sin θŷ] + (2ṙθ̇ + rθ̈)[− sin θx̂ + cos θŷ]

= (r̈ − rθ̇2)r̂ + (2ṙθ̇ + rθ̈)θ̂.

We define the total force to be the sum of forces along the standard basis vectors, F = Frr̂ + Fθθ̂.
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Therefore:

Fr = m(r̈ − rθ̇2),

Fθ = m(2ṙθ̇ + rθ̈).

Nearly every term here is fairly intuitive. We can simply consider purely radial motion (in which

case θ̇ = 0) or purely circular motion (in which case ṙ = 0), and the equations above will yield

well-known identities. For example, in circular motion, at least on the radial side of things, we

obtain:

Fr = −mrθ̇2 = −mrω2 = −mv
2

r
,

which is simply centripetal force.

The outlier seems to be the 2mṙθ̇ term. This term is the Coriolis force. Observe that it only

exists if the particle is not moving purely circularly (in which case ṙ = 0) and is not moving purely

radially (in which case θ̇ = 0).

At this point, one may wonder why the Coriolis force appears in this derivation. Fictitious forces

are only observed in non-inertial reference frames. Were we not working in an inertial reference

frame?

The trick here is to define an inertial reference frame, S, from which we observe that the particle

has no angular velocity or radial velocity. In this inertial frame, the particle is stationary. Our

coordinate system (in which we did the above derivation), S′, then possesses an angular velocity of

θ̇ and a linear velocity of ṙ with respect to the inertial frame S, excluding sign. From the vantage

point of S′, S dances in synchronization with the particle, rotating and translating as the particle

does, such that the particle’s coordinate in S never changes. So in fact, we were working in a

non-inertial reference frame all along!

A more detailed discussion on the Coriolis force itself is outside the scope of this paper. For

now, we continue with some problems.

Problem: Consider a particle that feels an angular force only, of the form Fθ = 2mṙθ̇. Show

that the trajectory takes the form of an exponential spiral, that is, r = Aeθ.

Solution: Since there is only angular force, Fr = 0, hence:

r̈ = rθ̇2.

The given condition on angular force provides:

θ̈ = 0⇒ θ̇ =

∫
0 dt = C1 ⇒ θ =

∫
C1 dt = C1t+ C2.

Hence, our first equation becomes:

r̈ = C2
1r.
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The solution to this differential equation is simply r = eC1t. Now, we can force some manipulations:

r = eC1t

= e−C2 · eC1t+C2

= Aeθ,

for some constant A, as desired. �

Problem: Consider a particle that feels an angular force only, of the form Fθ = 3mṙθ̇. Show

that ṙ =
√
Ar4 +B. Also, show that the particle reaches r =∞ in a finite time.

Solution: Since there is once again only angular force,

r̈ = rθ̇2.

However, this time our condition on angular force provides:

rθ̈ = ṙθ̇.

For simplicity, let ϕ = θ̇. Then:

rϕ̇ = ṙϕ.

We may separate variables and integrate:∫
1

ϕ
dϕ =

∫
1

r
dr,

which yields ϕ = Cr. Substituting this in the first equation, we obtain:

r̈ = Cr3.

Integrating both sides with respect to r, the RHS becomes Cr4. However, the LHS becomes:∫
d2r

dt2
dr.

This becomes clearer if we let u = ṙ. Then, the integral is simply:∫
u du =

1

2
u2 +K = Cr4,

or simply:

ṙ =
√
Ar4 +B ,

for constants A and B, as desired.
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Showing that the particle reaches r = ∞ in a finite amount of time is considerably harder. I

adapt a solution by Mathematics StackExchange user Sangchul Lee, used to show that the function

satisfying y′ = 1 + y4 blows up in finite time.

Consider the ODE:

ṙ =
√
Ar4 +B =

√
B

√
A

B
r4 + 1.

Euler’s method shows that r must be concave up as there is a positive feedback loop-type effect. ṙ

is a strictly increasing function of r, so when r increases, ṙ increases, causing r to increase further,

ad infinitum. So, there must be tc such that ṙ ≥ 1∀t ∈ Dom r 3 t ≥ tc. Integrating this inequality,

we obtain that for sufficiently large t:

r(t) ≥ t.

Clearly, ṙ is bounded by:

ṙ ≥ r2
√
A⇒ ṙ

r2
≥
√
A.

Suppose tc < t0 < t1. We integrate both sides of the inequality above, with respect to t from t0 to

t1: ∫ t1

t0

ṙ

r2
dt ≥

√
A(t1 − t0).

The LHS transforms via substitution:∫ t1

t0

ṙ

r2
dt =

∫ r(t1)

r(t0)

1

r2
dr =

1

r(t0)
− 1

r(t1)
.

Hence:
1

r(t0)
− 1

r(t1)
≥
√
A(t1 − t0).

But since r(t) ≥ t, we must have 1
t0
≥ 1

r(t0)
≥ 1

r(t0)
− 1

r(t1)
, so:

1

t0
≥ 1

r(t0)
− 1

r(t1)
≥
√
A(t1 − t0).

Now we simply observe that if we let t1 = t0 + 1 and let t0 → ∞, we must have 1
t0
→ 0 but√

A(t1 − t0)→
√
A > 0, a contradiction.

Therefore, t0 cannot be made arbitrarily large, so the domain of r must be restricted to some

upper bound. The physical interpretation of r prohibits discontinuities, so a vertical asymptote

must instead exist and so r blows up in finite time, as desired. �

Reference:

Sangchul Lee’s proof that y′ = 1 + y4 blows up in finite time:

https://math.stackexchange.com/a/710535/419177
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