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In this paper, we discuss the 4-dimensional hypersphere (referred to as a glome or a 3-sphere).

We will derive an equation for the 4-dimensional hypervolume of a glome with radius r. Single-

variable calculus will be used extensively in this discussion, in particular, integral calculus. It is

expected that the reader can derive the volume of a sphere (4π3 r
3) easily using calculus.

Note that this is not by any means an original work of mine. This paper serves as a purely

instructive resource compiled from numerous other sources, not as research or other original work

of my own. The general layout of the proof is my own, though it is not unique, and much of the

computation was verified by both AoPS: Calculus and WolframAlpha. The proof of the lemma

that will be used is from Wikipedia. All links will be provided below.

First, what is a glome? It is the 4-dimensional analogue of the sphere and circle. Note that a

circle has equation:

x2 + y2 = r2

and a sphere has equation:

x2 + y2 + z2 = r2

Now letting a point in 4-dimensional Euclidean space (which we will abbreviate as 4-space) be

represented as (w, x, y, z) such that the w-axis is the fourth axis that is orthogonal to the other

three, it seems that a glome can be defined:

w2 + x2 + y2 + z2 = r2

simply by dimensional analogy (an important heuristic technique that we will rely on to make an

inductive hypothesis and other key observations later). To prove this with certainty, we simply

consider 4-dimensional vector space (R4). A vector in this space is of the form:

v = a1i + a2j + a3k + a4l

where i, j, k, and l are the standard basis vectors in R4. The norm of v is:

||v|| =
√
a21 + a22 + a23 + a24
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This implies that the distance between (w, x, y, z) and the origin in 4-space is
√
w2 + x2 + y2 + z2.

By the definition of a glome, we set this equal to r:√
w2 + x2 + y2 + z2 = r ⇒ w2 + x2 + y2 + z2 = r2

as desired. This definition of an n-ball can easily be extended to any dimension n using a trivial

induction.

Now that we know what a glome’s equation looks like, we can think about how to find its 4-

volume. Consider a sphere passing through a plane. On the plane, cross-sections are taken. First,

when the plane is tangent to the sphere, there is a single point where both coincide. Then on the

plane, a circular cross-section appears, grows to the great circle of the sphere, then decreases back

to a point. By dimensional analogy, if a glome passes through 3-space, then we should be able to

see a point, followed by a sphere expanding from this point until it reaches a certain maximum,

and then decrease again until it converges to and vanishes from a point. That is, the cross-sections

of a glome made by 3-space must be spheres. We can see this if we subtract a squared term from

our glome equation:

w2 + y2 + z2 = r2 − x2

So as x goes from −r to r, we see that we have a sphere of radius
√
r2 − x2 in the wyz-space.

Hence our suspicion was correct. Then, letting Vn(r) be the n-volume of an n-ball with radius r,

it follows that our 4-volume must be:

V4(r) =
4π

3

∫ r

−r

(√
r2 − x2

)3
dx

Exploiting the the symmetry of the glome, we can simplify the limits of integration and compensate

by multiplying by 2:

V4(r) =
8π

3

∫ r

0

(√
r2 − x2

)3
dx

But now what? It is not at all clear how to evaluate the integral. In fact, that integral is extremely

difficult to compute.

Instead of trying to attack the integral, let’s take a step back and think. A little bit of thinking

brings us back to our trusty old friend: dimensional analogy.

Notice that the area of a circle is πr2 and the volume of a sphere is 4π
3 r

3. In general, it seems

that:

Vn(r) = δnr
n

Where δn = Vn(1).

Lemma:

Vn(r) ∝ rn

Proof: We prove this using induction and set the above proportion as our inductive hypothesis.
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The hypothesis clearly holds for the base case n = 0. Now suppose that the hypothesis is true for

dimension n = k. Then we must have:

Vk+1(r) =

∫ r

−r
Vk

(√
r2 − x2

)
dx =

∫ r

−r
Vk

(
r

√
1−

(x
r

)2)
dx

Recall that we are assuming Vk(r) = δkr
k so Vk(r1r2) = δkr

k
1r
k
2 . This means that we can eliminate

the extra factor of r in the argument of the function Vk by multiplying it by rk. Hence, we have:

Vk+1(r) = rk
∫ r

−r
Vk

(√
1−

(x
r

)2)
dx

Now suppose we let u = x
r . Then we have du = 1

r dx so our integral becomes:

Vk+1(r) = rk+1

∫ 1

−1
Vk

(√
1− u2

)
du

But we notice that Vk+1(1) =
∫ 1
−1 Vk

(√
1− u2

)
du. Therefore:

Vk+1(r) = rk+1Vk+1(1)

Which completes our induction.

�

The implications of our lemma are clear. Instead of computing V4(r), we can compute the

equivalent expression V4(1)r4. We have:

V4(1) =
8π

3

∫ 1

0

(√
1− x2

)3
dx

Aha! This integral looks much more friendly! The radical and its radicand screams at us to perform

a trigonometric substitution. Who are we to hold back? Letting x = sin θ gives dx = cos θ dθ and:

V4(1) =
8π

3

∫ π
2

0
cos θ

(√
1− sin2 θ

)3
dθ =

8π

3

∫ π
2

0
cos4 θ dθ

Now we use the double-angle identity cos2 θ = cos 2θ+1
2 to obtain:

V4(1) =
2π

3

∫ π
2

0
(cos 2θ + 1)2 dθ =

2π

3

∫ π
2

0
cos2 2θ + 2 cos 2θ + 1 dθ

We apply it another time on the term cos2 2θ and also knock out the last two terms:

V4(1) =
2π

3

(
(sin 2θ + θ)

∣∣∣∣π2
0

+

∫ π
2

0
cos2 2θ dθ

)
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We apply double-angle again to get:

V4(1) =
2π

3

(
(sin 2θ + θ)

∣∣∣∣π2
0

+
1

2

∫ π
2

0
cos 2θ + 1 dθ

)

Finally! Everything works out nicely:

V4(1) =
2π

3

(
5

4
sin 2θ +

3

2
θ

) ∣∣∣∣π2
0

=
2π

3

(
3π

4

)
=
π2

2

This means that the 4-volume of a unit glome is π2

2 . Combining this with our lemma, we can

conclude that the 4-volume of a glome with radius r is given by:

V4(r) =
π2

2
r4

Q.E.D.

Reflections and Retrospect:

In fact, the method used in this discussion can be easily used to find the n-volume of any n-ball

(think about it; the integral always becomes susceptible to trigonometric subtitution regardless of

the dimension we are working in as long as we let r = 1). Our lemma is the key that connects the

unit n-ball’s n-volume to the general n-volume of the n-ball.

In case you’re interested, here are the first few values of the δ coefficients in the n-volume

formulae:

δ =

{
1, 2, π,

4π

3
,
π2

2
,
8π2

15
,
π3

6
,
16π3

105
,
π4

24
,
32π4

945
,
π5

120
, ...

}
Note that we start at dimension n = 0.

Also note that differentiating Vn(r) gives the (n−1)-volume enclosed by the n-ball. In our case,

the 3-volume enclosed by a glome with radius r is d
dr

(
π2

2 r
4
)

= 2π2r3.

By the way, that scary looking definite integral that we avoided computing can now be seen to

be 3π
16 r

4. While this by no means appears tame, it doesn’t look too wild either. How about the

indefinite integral?

Well as it turns out, that’s an entirely different story:∫ (√
r2 − x2

)3
dx =

1

8

(
3r4 arctan

(
x√

r2 − x2

)
+ x(5r2 − 2x2)

√
r2 − x2

)
+ C

Yeah good thing we didn’t bother with that. And as always, thank you WolframAlpha for quench-

ing my thirst but sparing the pain.

Sources:

https://en.wikipedia.org/wiki/Volume of an n-ball#The volume is proportional to the nth power of the radius
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https://en.wikipedia.org/wiki/Volume of an n-ball#Low dimensions

https://www.wolframalpha.com/input/?i=integrate+(r%5E2-x%5E2)%5E(3%2F2)dx

And of course, much thanks to AoPS for teaching me calculus.
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