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Consider a planet A with mass M and radius R, and a second (pointlike) object B with mass

m�M released from some distance D away from the surface of A in space. How long does it take

for the two objects to collide?

Note: In this problem, we will neglect the acceleration of A towards B, since M � m.

First, we define a coordinate system. Let A be centered at the origin, and let B start at the

coordinate (R+D, 0). We wish to find how long it takes for B to get from (R+D, 0) to (R, 0).

By the conservation of energy, the sum of the kinetic energy and the gravitational potential

energy (GPE) is a constant. This constant is equal to the GPE of B right before it is released:

K + U = U0

We have K = 1
2mv

2, hence:
1

2
mv2 + U = U0

To define the GPE, we must choose a reference point where the GPE is equal to 0. A natural

candidate for such a reference point is the center of A, the origin. Then, we can define the GPE

as the negative of the work done by gravity on an object in free fall from some coordinate (x, 0) to

the origin (or equivalently, the work done by some force to lift an object from the origin to (x, 0)):

U =

∫ 0

x

GMm

x2
dx = −

∫ x

0

GMm

x2
dx

Where the integrand follows from Newton’s Law of Universal Gravitation. However, this choice of

reference point presents a problem. The improper integral above diverges. This implies that the

closer an object is to the center of gravity of a much more massive object, the harder it is to lift

that object, until the object and center of gravity coincide with each other, in which case the task

becomes impossible!

Instead, we choose a different reference point. In fact, we can choose any other reference point.
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Conservation of energy will still yield the same result. Intuitively, this is because the initial GPE,

U0, will be calculated with respect to the same reference point as the instantaneous GPE, U . This

is analogous to being able to let the height in the expression for GPE in a uniform gravitational

field (mgh) be taken with respect to any vertical coordinate.

We can demonstrate this more rigorously. Suppose we choose the point on the surface of A that

is the closest to B, namely (R, 0), as our reference point. Then:

1

2
mv2 −

∫ x

R

GMm

x2
dx = −

∫ R+D

R

GMm

x2
dx

Performing the integration:

1

2
mv2 − GMm

x
+
GMm

R
=
GMm

R
− GMm

R+D

The term dependent upon our reference point cancels! This proves that the resulting relationship

between velocity and position is independent of our reference point. Observe that the relationship

is not dependent on the mass of B either.

v = −

√
2GM

(
1

x
− 1

R+D

)
We take the negative sign to account for the fact that we defined left to be negative. Note that this

is a first-order nonlinear differential equation. The equation is in fact separable. We let k =
√

2GM

and α = (R+D)−1. Then we obtain:

−
∫

1√
1
x − α

dx =

∫
k dt

The RHS is trivially kt. The rest of the problem boils down to integrating the LHS:

I = −
∫

1√
1
x − α

dx = kt

We tackle this by first substituting u =
√

1
x − α. Then, du = − 1

2x2u
dx. Now our integral becomes:

I = 2

∫
x2 du

Rearranging our definition of u, we find x = 1
α+u2

, hence our integral becomes:

I = 2

∫
1

(α+ u2)2
du =

2

α2

∫
1(

1 + u2

α

)2 du
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Next, we substitute u =
√
α tan θ. Note that du =

√
α sec2 θ dθ, and our integral becomes:

I = 2α−3/2
∫

sec2 θ

(1 + tan2 θ)
2 dθ

= 2α−3/2
∫

cos2 θ dθ

Which is finally in familiar territory! The cosine double angle formula yields cos 2θ = 2 cos2 θ − 1.

Rearranging this to solve for the square of cosine and substituting this into our original integral

leads to:

I = α−3/2
∫

1 + cos 2θ dθ = α−3/2
(
θ +

1

2
sin 2θ

)
+ C

Finally, we reverse our substitutions. We have θ = arctan u√
α

. By the double angle formula for

sine, we have 1
2 sin 2θ = sin θ cos θ. Since tan2 θ + 1 = sec2 θ, we have cos θ = 1√

1+tan2 θ
. Hence:

cos arctan
u√
α

=
1√

1 + u2

α

=
α√

α2 + αu2

And:

sin arctan
u√
α

√
1− cos2 arctan

u√
α

=

√
α2 + αu2 − α2

αu2 + α2
=

u
√
α√

α2 + αu2

Hence:
1

2
sin 2θ =

uα3/2

α2 + αu2

This yields:

I =
u

α2 + αu2
+ α−3/2 arctan

u√
α

+ C

Reversing our u− substitution:

I = α−3/2

(√
αx− α2x2 + arctan

√
1

αx
− 1

)
+ C

And now we undo our α = (R+D)−1 and our k =
√

2GM substitutions to obtain:

t =

√
(R+D)3

2GM

(√
x

R+D
− x2

(R+D)2
+ arctan

√
R+D

x
− 1

)
+ C

To find the constant of integration, C, we note the initial condition of x = R + D at t = 0. This

yields C = 0. We have thus derived our main result:

t =

√
(R+D)3

2GM

(√
x

R+D
− x2

(R+D)2
+ arctan

√
R+D

x
− 1

)

3



We have solved the problem, but we have not yet answered the question. When does the collision

occur? It occurs when x = R. This gives us:

tf =
1√

2GM

(
(R+D)

√
RD

R+D
+ (R+D)3/2 arctan

√
D

R

)

Amazing! Observe that limR→0 t = 1√
2GM

(
D
√
x− x2

D +D3/2 arctan
√

D
x − 1

)
describes the case

where A is a point mass.

Figure 1: The graph of the parent function x(t) (in other words, k = α = 1). The graph was

obtained by reflecting the graph of the parent function of t(x) about the line t = x.
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