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1 Introduction

Let k be a field. In algebraic geometry, there is an obvious emphasis on algebraic subsets of affine space
An(k) (which we will abbreviate as An when the underlying field is unimportant). Arguably, these are among
the central objects of study. One of the first results in classical algebraic geometry is that the property of a
subset that is to be algebraic is closed under certain set-theoretic operations. In particular,

• If I, J ⊆ k[X1, . . . , Xn], then it is clear that V (I)∪V (J) = V ({FG : F ∈ I,G ∈ J}). This implies that
the collection of algebraic sets is closed under finite unions.

• If A is any nonempty set such that for every α ∈ A we have Iα ⊆ k[X1, . . . , Xn], then
⋂
α∈A V (Iα) =

V
(⋃

α∈A Iα
)
. Hence, the collection of algebraic sets is closed under arbitrary intersections.

This observation shows us that the algebraic subsets of An can be said to induce a topology on An.

Definition: Let X be a nonempty set. A topology on X is a collection of subsets τ ⊆ P(X) such that
∅, X ∈ τ and τ is closed under arbitrary unions and finite intersections. A subset U ⊆ X is said to be open
if and only if U ∈ τ and closed if and only if X \ U ∈ τ . The pair (X, τ) is a topological space.

Since the algebraic subsets of An are closed under finite unions and arbitrary intersections, it is clear
that they form the closed sets with respect to a topology on An. This topology is what we will study.

Definition: The Zariski topology on An is the topology on An that takes the closed sets to be the
algebraic subsets of An. That is, it is the topology on An consisting of the complements of algebraic subsets
of An.

This topology encodes the information contained in the collection of algebraic sets of an affine space.
Throughout this discussion, we will need various notions from topology.

Definition: Let (X, τ) be a topological space and x ∈ X. A neighborhood of x is an open set U containing
x.

Definition: Let (X, τ) be a topological space, and let U ⊆ X. The intersection of all closed sets containing
U is the closure of U , denoted U . It is the smallest closed set containing U .

Definition: Let (X, τ) be a topological space. A set U ⊆ X is said to be dense in X if U = X.

Definition: Let (X, τ) and (Y, σ) be topological spaces. A map f : X → Y is continuous if the preim-
age of every open set in Y is an open set in X. A continuous bijection with a continuous inverse is a
homeomorphism.

Definition: A topological space (X, τ) is said to be Hausdorff if for every x, y ∈ X with x 6= y, there exists
a neighborhoods U of x and V of y such that U and Y are disjoint.

Definition: Let (X, τ) be a topological space and V ⊆ X. V is said to be compact if every open cover of V
admits a finite subcover, that is, for every nonempty set A with Uα ∈ τ for every α ∈ A and V ⊆

⋃
α∈A Uα,

there exists α1, . . . , αn ∈ A such that V ⊆
⋃n
i=1 Uαi

. V is said to be precompact if V is compact.
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Definition: Let X be a nonempty set. The collection of subsets of X whose complements are finite forms
a topology on X, called the cofinite topology on X.

Definition: Let X be a nonempty set. The topology given by P(X) is the discrete topology on X.

Definition: Let X be a nonempty set and let τ and σ both be topologies on X such that τ ⊆ σ. We say
that τ is coarser than σ and σ is finer than τ .

Definition: Let (X, τ) be a topological space. If there exists a metric d on X such that d induces the
topology τ , we say that τ (or X when the topology is understood) is metrizable.

2 Basic Properties

We will first study the Zariski topology in the simplest cases. It turns out that the Zariski topology has
especially simple characterizations in the case that k is a finite field and in the case of affine 1-space, A1.

Proposition 1: If k is a finite field, the Zariski topology on An(k) coincides with the discrete topology.

Proof. This is equivalent to the statement that every subset of An(k) is algebraic. Indeed, every singleton is
trivially algebraic and every subset of An(k) can be written as a finite union of singletons.

Proposition 2: The Zariski topology on A1 coincides with the cofinite topology.

Proof. This is equivalent to the statement that a subset of A1 is algebraic if and only if it is finite or otherwise
all of A1. Suppose S ⊆ A1 is algebraic. Then S ⊆ V (f) for some f ∈ k[X]. Suppose further that S 6= A1 so
that f can be chosen to be a nonzero polynomial. Now by the factor theorem, |S| ≤ V (F ) ≤ deg f <∞. In
the other direction, suppose that S is either finite or all of A1. If S is all of A1, then S is trivially algebraic.
Otherwise, if S is finite, then we may write S = V (f) where f =

∏
s∈S (X − s) ∈ k[X].

Proposition 1 says that the algebraic sets over a finite field are uninteresting in the sense that every
subset is such a set. In this extreme case, the topology is so fine that it fails to significantly diverge from
our intuition. We will see in Proposition 5 and Proposition 6 that the Zariski topology behaves much more
strangely over infinite fields.

The Zariski topology gives us a way to topologically interpret the operations V and I from classical
algebraic geometry.

Proposition 3: Let S ⊆ An. V (I(S)) = S.

Proof. Of course, I(S) consists of all polynomials vanishing on S so V (I(S)) is a closed set containing S.
Hence, S ⊆ V (I(S)). On the other hand, if x ∈ V (I(S)), then every polynomial vanishing on S will also
vanish on x. Hence, if S ⊆ V (J), then x ∈ V (J) because every polynomial in J must vanish on x. That is,
x is in every closed set containing S, so x ∈ S. This completes the last inclusion.

An interesting question is that of the relationship between the standard Euclidean topology on Rn or
Cn (where open sets are defined in the obvious way with the Euclidean metric) and the Zariski topology
on An(R) or An(C). The first direct relationship is that the Zariski topology is strictly coarser than the
Euclidean topology.

Proposition 4: Let k ∈ {R,C}. The Zariski topology on An(k) is strictly coarser than the Euclidean topology
on kn.

Proof. First we show that the Zariski topology is coarser than the Euclidean topology by showing that every
closed set in the Zariski topology is also closed in the Euclidean topology. Let S be a closed set in the Zariski
topology. Then we can write S = V (I) for some I ⊆ k[X1, . . . , Xn]. Pick f ∈ I. We can interpret f as a
polynomial map f : kn → k. Since f is polynomial, this map is continuous with respect to the Euclidean
topologies on kn and k. In particular, {0} ⊆ k is closed in the Euclidean topology, so f−1({0}) ⊆ kn is
closed in the Euclidean topology. Now, S = V (I) =

⋂
f∈I f

−1({0}) is closed in the Euclidean topology as
an intersection of closed sets.
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Now we will check that Zariski topology is strictly coarser by finding a set that is closed in the Euclidean
topology but not the Zariski topology. Let U be a nonempty subset of kn that is open and not dense with
respect to the Euclidean topology (one can choose, for instance, an open ball). Let V = U , where the closure
is taken with respect to the Euclidean topology. V is a closed set in the Euclidean topology. Notice further
that since U is not dense, V 6= An(k) = kn. We claim that V is not an algebraic set.

Suppose to the contrary that V is algebraic. Then V = V (I) for some I ⊆ k[X1, . . . , Xn]. Pick f ∈ I.
Since U ⊆ V , f must vanish on U . If n = 1, then f is polynomial and thus an analytic function of one variable
that is zero on an open set (in the Euclidean topology). By the identity theorem from analysis, f is identically
zero. If n > 1, for every y = (y1, . . . , yn−1) ∈ An−1(k), define gy ∈ k[X] by gy(X) = f(y1, . . . , yn−1, X).
Now we invoke the following topological fact: the projection map πn : kn → k given by π(x1, . . . , xn) = xn
is an open map.1 Hence, πn(U) is open with respect to the Euclidean topology. So for every y ∈ An−1(k),
gy vanishes on the open set πn(U) of k, so gy is identically zero for every y by the identity theorem. Since y
is arbitrary, we conclude in this case as well that f is identically zero.

Hence, the only function in I must be the constant zero function, and so V = V (I) = An(k), contradiction.
It follows that V is not algebraic.

Proposition 4 manifests itself in a concrete way. The Euclidean topology is Hausdorff (in fact, the
Euclidean topology obeys much stronger separation axioms). However, the Zariski topology is so much
coarser than the Euclidean topology that it fails to be Hausdorff (on Rn or Cn). We can state this more
generally.

Proposition 5: If k is an infinite field, then An(k) with the Zariski topology is not Hausdorff.

Proof. Let k be an infinite field and let x, y ∈ An(k) be distinct points. Suppose there exist disjoint
neighborhoods U and V of x and y, respectively. Since U c and V c are both closed, there exists sets
S, T ⊆ k[X1, . . . , Xn] such that U c = V (S) and V c = V (T ). The condition that U and V are disjoint is
then equivalent to V (S)c ∩ V (T )c = ∅. Therefore, there exists no point P ∈ An(k) such that P /∈ V (S) and
P /∈ V (T ). That is, every point P is either in V (S) or V (T ). That is, at any P ∈ An(k), either all f ∈ S
vanish or all g ∈ T vanish.

Suppose that the only polynomial in S is the zero polynomial. Then, U c = V (S) = An(k) so that
U = ∅, contradicting our assumption that x ∈ U . Hence, S contains a nonzero polynomial F . Let g ∈ T
be arbitrary. gF is a polynomial. Since at any point, either all polynomials in S or all polynomials in T
vanish, gF vanishes on all of k. Because k is infinite, gF must be the constant zero polynomial.2 Since the
polynomial ring k[X1, . . . , Xn] is an integral domain and F is not the zero polynomial by construction, g
must be the zero polynomial. That is, the only polynomial in T is the zero polynomial, and we arrive at a
contradiction as before.

Note that the hypothesis in Proposition 5 that k is infinite is crucial, though it is used in a rather subtle
way. If k is finite, Proposition 1 says that the Zariski topology is the discrete topology, which is clearly
Hausdorff.

One interesting consequence of Proposition 5 is that the Zariski topology is not metrizable, because every
metric space has a Hausdorff topology.

While the Zariski topology is not Hausdorff in general, it does always satisfy the weaker separation axiom
of T1. That is, for any pair of distinct points x, y ∈ An, there exists a neighborhood U of x but not of y. This
neighborhood is easy to construct: if y = (y1, . . . , yn), then we may select U = V (X1 − y1, . . . , Xn − yn)c.

The failure of the Zariski topology to be Hausdorff in general is one of the significant departures from
the more intuitive properties of the Euclidean topology. It turns out that it gets worse.

Proposition 6: If k is an infinite field, every nonempty open subset of An(k) with the Zariski topology is
dense.

1This is not a hard thing to see; it follows directly from the definition of product topology, which we will not define here.
2This is by induction on n and the fact that in one variable, the number of roots of a polynomial is bounded by the degree

of the polynomial, which is a finite number. This is problem 1.4 from Fulton, assigned in Homework 1.
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Proof. Let U ⊆ An be open and nonempty. Note that An(k) = U ∪ U c is a union of closed sets. Because
k is an infinite field, An(k) is irreducible,3 so either U = An(k) or U c = An(k). But the latter is ruled out
since U is nonempty.

Of course this result patently false in the Euclidean topology. One may take, for instance, any bounded
set that is open with respect to Euclidean topology and see that such a set will not be dense.

We demonstrate one last way in which the Zariski topology deviates spectacularly from the Euclidean
topology.

Proposition 7: An with the Zariski topology is compact.

Proof. Let
⋃
α∈A Uα = An be an open cover. We wish to extract a finite subcover, so it suffices to assume

without loss of generality that A is infinite. Consider an arbitrary countable subset {αj}j∈N ⊆ A and define

Vj =
⋃j
i=1 Uαi

so that the open sets Vj form an ascending chain

V1 ⊆ V2 ⊆ . . .

so that the complements form the descending chain

V c1 ⊇ V c2 ⊇ . . . .

The sets V cj are closed so we can pick ideals I1, I2, · · · ⊆ k[X1, . . . , Xn] where k is underlying field, such that
V cj = V (Ij) for all j ∈ N. Since the V operation is order-reversing, the ideals Ij form the ascending chain

I1 ⊆ I2 ⊆ . . .

By the Hilbert basis theorem, k[X1, . . . , Xn] is a Noetherian ring, so there exists an integer N such that
Ij = Ij+1 for all j ≥ N .4 It follows that Vj = Vj+1 for all j ≥ N . In particular, VN is an upper bound to
our chain of Vj ordered by inclusion. Hence, when we partially order the collection

C =

{
j⋃
i=1

Uβi
: j ∈ N, {αi}i∈N ⊆ A

}

by inclusion, every increasing chain has an upper bound, so by Zorn’s lemma, there exists a maximal element
U of C . Suppose U 6= An. Then, there exists x ∈ An \ U and α0 ∈ A such that x ∈ Uα0 . But by definition,
U =

⋃m
i=1 Uβi for some sequence {βi}i∈N ⊆ A. We may modify this sequence so that γi = βi for all i 6= N+1

and γN+1 = α0. Then,
⋃N+1
i=1 Uγi ∈ C and properly contains U , contradicting its maximality. Hence, we

have found the finite subcover
m⋃
i=1

Uβi
= U = An.

If one is uncomfortable with the use of Zorn’s lemma above, one can prove that An is countably compact
(that is, every countable open cover has a finite subcover) by adapting the main portion of the proof above
without needing to invoke Zorn’s lemma.5 Indeed, the Euclidean topology is not compact or even countably
compact.

3This is Problem 1.29 from Fulton, assigned in Homework 2. The solution depends on the fact that over an infinite field, a
polynomial that vanishes everywhere is the zero polynomial (which is the content of the previous footnote).

4In MATH 106, we define a Noetherian ring to be a ring whose ideals are finitely generated. More generally, a Noetherian
module is defined to be module whose submodules satisfy the so-called ascending chain condition: every ascending chain of
submodules becomes constant. This is equivalent to the condition that every submodule is finitely generated.

5Incidentally, one can also prove compactness using the weaker axiom of countable choice.
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3 The Cayley-Hamilton Theorem

While the properties of the Zariski topology are interesting, it is somewhat obscure what can be done with
it. By using the collection of algebraic sets to form the Zariski topology, we passed from algebra to topology.
This can be reversed: we may use the topological properties we developed in the previous section to say
something about algebra. The Cayley-Hamilton theorem is a well-known theorem from linear algebra. As it
turns out, it may be proven by considering the Zariski topology on affine space.

Theorem (Cayley-Hamilton Theorem): Let k be an infinite field and A ∈ Mn(k) an n × n matrix. A
satisfies its own characteristic equation.

Proof. Let k be the algebraic closure of k. Observe that the coefficients of χA are in k ⊆ k for any A ∈Mn(k).
So it suffices to establish the theorem for k.

We identify Mn(k) with An2

(k). Let

X =
{
A ∈Mn(k) : χA(A) = [0]

}
,

U =
{
A ∈Mn(k) : A has n distinct eigenvalues

}
.

U is clearly nonempty, since any diagonal matrix with distinct elements on the diagonal is in U . Pick

A ∈ U . Since A has n distinct eigenvalues, there exists an eigenbasis v1, . . . , vn of k
n2

over which A becomes
diagonal. Let λ1, . . . , λn be the distinct eigenvalues of A. Then, the characteristic polynomial factors as
χA(x) =

∏n
i=1 (x− λi) so that χA(A) =

∏n
i=1 (A− λiI).

Let v ∈ kn
2

be arbitrary. Pick c1, . . . , cn so that v =
∑n
j=1 cjvj . Then

χA(A)(v) =

n∏
i=1

(A− λiI)

n∑
j=1

cjvj =

n∑
j=1

[(
cj

n∏
i=1

(λj − λi)

)
vj

]
=

n∑
j=1

(0 · vj) = ~0,

where the second equality comes from the fact that A−λiI is a diagonal matrix in the basis we have chosen.
Hence χA(A) = [0] and A ∈ X. This shows that U ⊆ X.

For any T ∈ Mn(k), we can consider the discriminant of the characteristic equation of T which is
∆(χT ) =

∏
i6=j (λi − λj), where λ1, . . . , λn is a list of the eigenvalues of T counted with multiplicity. Since

k is algebraically closed, there is no matrix in Mn(k) with less than n eigenvalues when counted with
multiplicity. Therefore, A ∈ U if and only if the eigenvalues of A are distinct. This happens if and only if
∆(χA) 6= 0 by construction. So we may alternatively make the characterization

U =
{
A ∈Mn(k) : ∆(χA) 6= 0

}
.

It is a fact that ∆(χA) is a polynomial in the coefficients of χA,6 which is itself a polynomial in the entries of
A, so there exists a polynomial f ∈ k

[
X1, . . . , Xkn2

]
such that ∆(χA) = f(A). Clearly, {0} is algebraic, so

f−1({0}) is algebraic as the preimage of an algebraic set under a polynomial map,7 and U = An2

(k)\f−1 ({0})
is open in the Zariski topology.

For any T ∈ Mn(k), each component of the matrix χT (T ) is a polynomial in the entries of T , so the
condition χA(A) = [0] is satisfied at the intersection of of the vanishing sets of the polynomials corresponding
to each component of χA(A). That is, X is an algebraic set and thus closed in the Zariski topology. We
have already shown that X ⊇ U . Since X is closed, we also have X ⊇ U . Finally, by Proposition 6, since k
is infinite and U is nonempty and open, U is dense and we have

X ⊇ U = An
2

(k).

That is, X = Mn(k).

6This follows from the fact that χA(A) is a symmetric polynomial in the λi by definition, so it is a polynomial in the
elementary symmetric sums of the λi which are precisely the coefficients of χA(A) (up to a constant) due to Vieta’s formulas.
Alternatively, this can be shown using Galois theory.

7This is the first part of Problem 2.7 in Fulton.

5



The Cayley-Hamilton theorem in a vacuum is quite mysterious, but the manner of proof above makes
it especially interesting. What we have really shown is that if k is an infinite algebraically closed field,
when we endow the space of linear operators on kn with the Zariski topology by identifying it with affine
n2-space, the subset of operators with distinct eigenvalues is dense and thus by Proposition 7, precompact.
This is reminiscent of the Arzelà-Ascoli theorem from analysis, which states a certain subset of the space of
continuous functions is precompact with respect to a natural topology.

The Zariski topology is perhaps not the natural topology on the space of linear operators on kn, but this
analogy with the Arzelà-Ascoli theorem motivates us to ask even more interesting questions. The power of the
Arzelà-Ascoli theorem is that the natural ambient topology in consideration is metrizable, so compactness
in the space of continuous functions is equivalent to sequential compactness. In practice, the sequential
compactness implied by Arzelà-Ascoli is what is really used. While we already know by Proposition 5 that
the Zariski topology is not metrizable, I do not know if affine space with the Zariski topology is sequentially
compact.

Question: Is An with the Zariski topology sequentially compact?

4 The Spectrum of a Ring

The Zariski topology we have discussed thus far is a topology on affine space over a field. It turns out that
this topological space corresponds to another that is quite different.

Definition: Let R be a ring. The collection of prime ideals of R, denoted by SpecR, is the spectrum of
R.

We can endow the spectrum of a ring with a topology, also called the Zariski topology.

Definition: Let R be a ring. Let E ⊆ R. We denote the set of prime ideals of R containing E by Ṽ (E).

The subsets of SpecR of the form Ṽ (E) are the closed sets of the Zariski topology on SpecR.

The Zariski topology on the spectrum of a ring is very interesting to study, and many of its properties are
shared with the Zariski topology on affine space. There is in fact a correspondence with the Zariski topology
on affine space. However, this correspondence is somewhat difficult to state, lengthy to develop, and hard to
prove. To conclude this burgeoning expository paper, I will establish a relationship between the operation
V that we are familiar with from MATH 106 and Ṽ defined above.

Proposition 8: Let k be a field and let R = k[X1, . . . , Xn]. For any ideal I ⊆ k[X1, . . . , Xn],

V (I) = V

 ⋂
J∈Ṽ (I)

J

 .

Proof. Let I ⊆ k[X1, . . . , Xn] be an ideal. It suffices to show that
⋂
J∈Ṽ (I) J =

√
I.8

Put S =
⋂
J∈Ṽ (I) J . Let x ∈

√
I. Then there exists n ∈ N such that xn ∈ I ⊆ S. For every J ∈ Ṽ (I), we

have that J is prime and xn ∈ J , so inductively, x ∈ J . Hence x ∈ S establishing that
√
I ⊆ S.

In the other direction, suppose now that x /∈
√
I. Let Ω be the collection of all ideals of k[X1, . . . , Xn]

that do not contain xn for any n ∈ N. Ω is nonempty because {0} ∈ Ω. We may partially order Ω by
inclusion. Consider a chain of elements of Ω,

J1 ⊆ J2 ⊆ . . . .

Since this is an ascending sequence of ideals,
⋃∞
i=1 Ji is an ideal. Moreover, no power of x is in the union by

construction. Hence
⋃∞
i=1 Ji is an upper bound of the chain and by Zorn’s lemma, there exists some maximal

element P ∈ Ω. Since P is not the full ring, there exist a, b ∈ k[X1, . . . , Xn] \ P . Since P is maximal in Ω,
the ideal P + 〈ab〉 is not in Ω, so in particular P + 〈ab〉 6= P . Hence, ab /∈ P . This establishes that P is
a prime ideal. Since we have found a prime ideal containing I but not x, we have that x /∈ S. Hence by
contrapositive, S ⊆

√
I.

8This is due to Problem 1.20 in Fulton.
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