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We know how to use analytic geometry in order to find the minimal distance between a circle

and a line. However, how do we find the minimal distance between an ellipse and a line? Clearly

the same approach does not work.

Let us analytically find the minimum distance between the line x + y = 4 and the ellipse
x2

4 + y2 = 1. The key is to scale the horizontal axis such that u = x
2 . Then, the ellipse equation

becomes:

u2 + y2 = 1

Likewise, the equation of the line becomes:

2u + y = 4

Now we simply must find the closest distance between that line and the unit circle. This can be

done fairly easily using analytic geometry. First find the equation of a line that goes through the

origin and is perpendicular to the other line:

y =
1

2
u

Now find the intersection point of the two lines. I.e., solve the system:

2u + y = 4

y =
1

2
u

The solutions are u = 8
5 and y = 4

5 . The second line intercepts the unit circle at u = 2√
5

and y = 1√
5

(trigonometry not even required—use simple substitution). So the shortest distance between the

circle and the line is the distance between (85 ,
4
5) and ( 2√

5
, 1√

5
). If we rescale our coordinate plane

by substituting back in: u = x
2 , then we will find the shortest distance between our ellipse and line

as being simply the distance between (165 ,
4
5) and ( 4√

5
, 1√

5
). This is simply given by:

√(16

5
− 4√

5

)2
+
(4

5
− 1√

5

)2
=

1

5

√
17(21− 8

√
5)
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No calculus required! In general, we can translate and dilate the ellipse in such a way that it

becomes a unit circle. If we apply the same transformations to the line, and then consider to be a

circle-to-line problem on a dilated plane, then we can find the intersection points, and then reverse

our dilation to find the corresponding points on the ellipse and line.

Figure 1: The given curves, intermediate projections, and final curves.

In the Fig 1, the given curves are the blue ellipse and the blue line. To find the minimal distance

between them, the incorrect approach is to use the line that passes through the center of the ellipse

and is perpendicular to the given line (which is the red line). Upon scaling the axis, we arrive at the

pink circle and line (which have been projected onto the original unscaled graph for perspective),

and the orange line passes through the center of the circle and is perpendicular to the pink line.

When we readjust, the coordinates of where the orange line intercepts the circumference of the

pink circle and the pink line become the coordinates where the green line intercepts the original blue

ellipse and line. It is between these points that the minimal distance is found. Two horizontal brown

lines prove that the readjustment of the coordinates after dilation only changes the x-coordinate

of the points (as we only scaled the x-axis in the problem). A third brown line is a line tangent

to the ellipse that is also parallel to the original blue line. The traditional calculus approach first

finds this tangent line and calculates the distance between that tangent line and the original blue

line. The fact that the point of tangency is is precisely the point on the ellipse that was found to
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be on the green line after readjustment serves as further justification to the analytic approach.

Figure 2: This is not an intersection with the pink line.

Please note that the pink line does not intercept the ellipse at the aforementioned point of

tangency (Fig 1.2). Its position relative to that point holds no significance.

The algorithm that the program runs is as follows:

The user will input eight different parameters, given the equations of the line and ellipse:

alx + bly = cl

(x− h)2

a2
+

(y − k)2

b2
= 1 or

(x− h)2

b2
+

(y − k)2

a2
= 1

for a > b. These are:

a→ the semi-major axis length of the ellipse

b→ the semi-minor axis length of the ellipse

al → line coefficient

bl → line coefficient

cl → line coefficient

h→ x-coordinate of the ellipse center

k → y-coordinate of the ellipse center

ω → the orientation parameter of the ellipse

The ω parameter determines which direction the ellipse is most stretched in. If ω = 1, then we

have an ellipse that is more horizontally stretched (i.e. a2 appears under (x− h)2). If ω = 2, then
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the ellipse is more vertically stretched (i.e. a2 appears under (y − k)2). If the ellipse is equally

stretched in both dimensions, (i.e. it is a circle), then we are free to choose either 1 or 2 for the

value of ω.

First, the program checks for nonsensical inputs. For instance, if ab = 0, or if al = bl = 0, then

the program outputs an error. The rest of this description beyond this point will assume that none

of the error conditions have been met.

Next, the program checks the ω value. This parameter is relevant because the algorithm assumes

the equation of an ellipse to be:
(x− h)2

a2e
+

(y − k)2

b2e
= 1

The key difference with the algorithm’s assumption and the standard form of an ellipse is that in

an ellipse, the values a and b are defined as the major and minor axes respectively. However, the

algorithm’s ”standard form” lets ae and be to simply be the horizontal and vertical stretch factors

respectively. In other words, ae is always the horizontal stretch factor, under (x − h)2, and be is

always the vertical stretch factor, under (y − k)2, regardless of whether it is true that ae ≥ be or

ae ≤ be.

Therefore, to clarify if the user’s a value corresponds to the algorithm’s ae variable and the

b value corresponds to the be variable (i.e. if the ellipse is stretched more horizontally than it is

vertically) we let ω = 1. If the ellipse is actually stretched more vertically than it is horizontally,

then we let ω = 2 which tells the program to assign a = be and b = ae.

This description of the algorithm beyond this point will assume ω = 1. It is evident that if

ω = 2, the program will follow the exact same steps, except it will always switch the values of ae

and be relative to what it would assign if ω = 1.

The program checks to see if either al = 0 or bl = 0 (but not both because this would result in

an error as mentioned above). If al = 0, then the given line is horizontal (with equation y = cl
bl

).

Hence the closest distance between the ellipse and the line will trivially be the distance from the

center of the ellipse to the line minus the length of the vertical axis of the ellipse. In terms of our

parameters, we see that this is given by: ∣∣∣∣clbl − k

∣∣∣∣− be

But if this value is less than 0, then it is implied that the line intersects the ellipse. If that value

is equal to 0, then it is implied that the line is tangential to the ellipse. In either of those cases,

the shortest distance between the ellipse and the line is 0 because there is at least one shared point

between the ellipse and the line. Therefore:

al = 0→
∣∣∣∣clbl − k

∣∣∣∣− be ≥ 0→ output =

∣∣∣∣clbl − k

∣∣∣∣− be

al = 0→
∣∣∣∣clbl − k

∣∣∣∣− be < 0→ output = 0
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The same logic applies if the line is vertical:

bl = 0→
∣∣∣∣ clal − h

∣∣∣∣− ae ≥ 0→ output =

∣∣∣∣ clal − h

∣∣∣∣− ae

bl = 0→
∣∣∣∣ clal − h

∣∣∣∣− ae < 0→ output = 0

But if both al and bl are nonzero, then the line has a finite nonzero slope. These are the

nontrivial cases, and that brings us to the heart of the program.

When al, bl > 0, then we have an oblique line. First, the program will translate both the ellipse

and line such that the center of the ellipse coincides with the origin. While this is really just

a superficial step, it makes the next steps mathematically cleaner and easier to follow (and also

computationally more efficient). When this is done, the equations for our ellipse and line are:

x2

a2e
+

y2

b2e
= 1

al(x + h) + bl(y + k) = cl

At this point, the program scales both axes according to the equations:

x = aexs

y = beys

Where (xs, ys) are the scaled coordinates. The line and ellipse equations become:

x2s + y2s = 1

alae(xs + h) + blbe(ys + k) = cl ⇒ alaexs + blbeys = cl − alaeh− blbek

The program then assigns the substitutions al2 = alae, bl2 = blbe, and cl2 = cl − alaeh− blbek. The

translated and scaled line thus has equation:

al2xs + bl2ys = cl2

It is at this point that the program makes a determination as to whether or not the original ellipse

and oblique line had intersected (or were tangential) which would imply that their minimal distance

apart was 0. It does this in a rather crafty manner.

Suppose the original line and ellipse had intersected or were tangential. This means they share

at least one common ordered pair. The key insight is to realize that if the original line and ellipse

had intersected or were tangential, then the same would be true for the new transformed line and

ellipse (which has effectively become a unit circle)!

For the transformed line to intersect or be tangential to the unit circle, its distance from the
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origin must be lesser than or equal to 1 (if the distance is equal to 1, then the transformed line and

unit circle are tangential and so are the original line and ellipse, and if the distance is lesser than

1, then the transformed line and unit circle intersect and so do the original line and ellipse). The

output should clearly be 0 in both cases.

The distance between the origin and the transformed line (al2x + bl2y = cl2) is easily given by

the point-to-line equation. Upon simplification, it is:

|cl2 |√
a2l2 + b2l2

We have already deduced above that if this expression is less than or equal to 1, then the original

line and ellipse must share at least one common point. This means:

|cl2 |√
a2l2 + b2l2

≤ 1→ output = 0

If this value is however greater than 1, then the original line is completely outside the ellipse. If

this is the case, then the program continues.

The equation of the transformed line is al2xs + bl2ys = cl2 . It follows that the equation of a

line that is perpendicular to this transformed line that also passes through the origin is ys =
bl2
al2

xs.

The smallest distance between the unit circle and the transformed line is simply equivalent to the

smallest distance between where this perpendicular line intersects the circle and where it intersects

the transformed line. To find the coordinates of the intersection between the transformed line and

the perpendicular line, we must solve the system of equations:{
al2x + bl2y = cl2

y =
bl2
al2

x

The program assigns the solution to the coordinate (xs1 , ys1). The solution is:

xs1 =
al2cl2

a2l2 + b2l2

ys1 =
bl2cl2

a2l2 + b2l2

Similarly, to find the intersection point between the perpendicular line and the circle, the following

system of equations must be solved: {
x2s + y2s = 1

ys =
bl2
al2

xs
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The program assigns the solution to the coordinate (xs2 , ys2). The solution is:

xs2 = ± al2√
a2l2 + b2l2

ys2 = ± bl2√
a2l2 + b2l2

To determine the signs of xs2 and ys2 , the program will take into account the signs of xs1 and ys1

respectively. We can note that the desired intersection point between the perpendicular and the

unit circle must reside in the same quadrant as the intersection point between the perpendicular

and the transformed line. This implies that if xs1 > 0 then xs2 > 0 or if xs1 < 0 then xs2 < 0.

Likewise, if ys1 > 0 then ys2 > 0 or if ys1 < 0 then ys2 < 0.

Now that the desired intersection points (xs1 , ys1) and (xs2 , ys2) are found on the scaled graph,

the program undoes the scaling to find the corresponding points (x3, y3) and (x4, y4) respectively.

Essentially, the program has found the closest points on the scaled curves, so it is unscaling to find

the closest points on the original curves (the ellipse and the original line). Recall that the plane

was originally scaled according to the equations x = aexs and y = beys. Using these equations, the

program finds the final coordinates to be:

(xs1 , ys1)→ (aexs1 , beys1)

(xs2 , ys2)→ (aexs2 , beys2)

The last step is to find the distance between these two final points. By the distance formula, the

program concludes:

line is oblique and outside the ellipse→ output =

√
(aexs1 − aexs2)2 + (beys1 − beys2)2

Keep in mind that this was all under the assumption that ω = 1. If ω = 2, then the program

performs the same steps except it will swap ae and be in every computation. If the original ellipse

was already a circle, then ae = be, swapping them does not change the final output, hence the ω

value is irrelevant.

Here is the program in Java:

1 //Copyright : ANDREW PAUL

2 import java . u t i l . Scanner ;

3 public class E l l i p s eCa l c u l a t o r

4 {
5 public stat ic void main ( St r ing [ ] a rgs )

6 {
7 Scanner in = new Scanner ( System . in ) ;

8 System . out . p r i n t l n ( “ Please input the x c o e f f i c i e n t o f the l i n e . ” ) ;
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9 double xLine = in . nextDouble ( ) ;

10

11 System . out . p r i n t l n ( “ Please input the y c o e f f i c i e n t o f the l i n e . ” ) ;

12 double yLine = in . nextDouble ( ) ;

13

14 System . out . p r i n t l n ( “ Please input the constant term in the standard ”

15 + “form o f your l i n e . ” ) ;

16 double cLine = in . nextDouble ( ) ;

17

18 System . out . p r i n t l n ( “ Please input the x−coord ina te o f the e l l i p s e c en t e r . ” ) ;

19 double xE l l i p s e = in . nextDouble ( ) ;

20

21 System . out . p r i n t l n ( “ Please input the y−coord ina te o f the e l l i p s e c en t e r . ” ) ;

22 double yE l l i p s e = in . nextDouble ( ) ;

23

24 System . out . p r i n t l n ( “ Please input the semi−major ax i s l ength o f the e l l i p s e . ” ) ;

25 double semiMaj = in . nextDouble ( ) ;

26

27 System . out . p r i n t l n ( “ Please input the semi−minor ax i s l ength o f the e l l i p s e . ” ) ;

28 double semiMin = in . nextDouble ( ) ;

29

30 System . out . p r i n t l n ( “ I f the e l l i p s e i s more h o r i z o n t a l l y s t r e t ched than ”

31 + “ v e r t i c a l l y s t r e tched , p l e a s e ente r 1 . Otherwise , ente r 2 . ” ) ;

32 int or i entat ionParameter = in . next Int ( ) ;

33

34 in . c l o s e ( ) ;

35

36 double d i s t ance ;

37

38 i f ( ( semiMaj <= 0 | | semiMin <= 0) | | ( o r i entat ionParameter != 1 &&

39 or i entat ionParameter != 2) | | ( semiMin > semiMaj ) | |
40 ( xLine == 0 && yLine == 0))

41 {
42 System . out . p r i n t l n ( “Your input i s i n v a l i d ! ” ) ;

43 System . e x i t ( 0 ) ;

44 }
45

46 int counter = 0 ;

47

48 do

49 {
50 i f ( o r i entat ionParameter == 1)

51 {
52 i f ( xLine == 0)

53 {
54 d i s t ance = (Math . abs ( ( cLine /yLine)− yE l l i p s e ))−semiMin ;

55 i f ( d i s t ance < 0)

56 {
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57 d i s t anc e = 0 ;

58 }
59 System . out . p r i n t l n ( “The sho r t e s t d i s t ance between the e l l i p s e ”

60 + “and the l i n e i s : ” + d i s t anc e ) ;

61 System . e x i t ( 0 ) ;

62 }
63 else i f ( yLine == 0)

64 {
65 d i s t ance = (Math . abs ( ( cLine /xLine)− xE l l i p s e ))−semiMaj ;

66 i f ( d i s t ance < 0)

67 {
68 d i s t anc e = 0 ;

69 }
70 System . out . p r i n t l n ( “The sho r t e s t d i s t ance between the e l l i p s e ”

71 + “and the l i n e i s : ” + d i s t anc e ) ;

72 System . e x i t ( 0 ) ;

73 }
74

75 double xLine2 = xLine ∗ semiMaj ;

76 double yLine2 = yLine ∗ semiMin ;

77 double cLine2 = cLine − ( xLine2 ∗ xE l l i p s e ) − ( yLine2 ∗ yE l l i p s e ) ;

78

79 d i s t anc e = (Math . abs ( cLine2 ) ) / (Math . s q r t ( (Math . pow( xLine2 , 2 ) ) +

80 (Math . pow( yLine2 , 2 ) ) ) ) ;

81 i f ( d i s t anc e <= 1)

82 {
83 d i s t ance = 0 ;

84 System . out . p r i n t l n ( “The sho r t e s t d i s t ance between the e l l i p s e ”

85 + “and the l i n e i s : ” + d i s t anc e ) ;

86 System . e x i t ( 0 ) ;

87 }
88

89 double xOne = ( xLine2 ∗ cLine2 ) / ( (Math . pow( xLine2 , 2 ) ) +

90 (Math . pow( yLine2 , 2 ) ) ) ;

91 double yOne = ( yLine2 ∗ cLine2 ) / ( (Math . pow( xLine2 , 2 ) ) +

92 (Math . pow( yLine2 , 2 ) ) ) ;

93 double xTwo ;

94 double yTwo ;

95 i f (xOne > 0)

96 {
97 xTwo = xLine2/Math . s q r t ( ( (Math . pow( xLine2 , 2 ) ) +

98 (Math . pow( yLine2 , 2 ) ) ) ) ;

99 }
100 else

101 {
102 xTwo = − xLine2/Math . s q r t ( ( (Math . pow( xLine2 , 2 ) ) +

103 (Math . pow( yLine2 , 2 ) ) ) ) ;

104 }
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105 i f (yOne > 0)

106 {
107 yTwo = yLine2/Math . s q r t ( ( (Math . pow( xLine2 , 2 ) ) +

108 (Math . pow( yLine2 , 2 ) ) ) ) ; }
109 else

110 {
111 yTwo = − yLine2/Math . s q r t ( ( (Math . pow( xLine2 , 2 ) ) +

112 (Math . pow( yLine2 , 2 ) ) ) ) ;

113 }
114

115 d i s t anc e = Math . sq r t ( (Math . pow ( ( ( semiMaj ∗ xOne) − ( semiMaj ∗ xTwo) ) , 2 ) )

116 + (Math . pow ( ( ( semiMin ∗ yOne) − ( semiMin ∗ yTwo) ) , 2 ) ) ) ;

117 System . out . p r i n t l n ( “The sho r t e s t d i s t ance between your e l l i p s e ”

118 + “and l i n e i s : ” + d i s t anc e ) ;

119 counter = 2 ;

120 }
121

122 else

123 {
124 double interMin = semiMin ;

125 double interMaj = semiMaj ;

126 semiMaj = interMin ;

127 semiMin = interMaj ;

128 or i entat ionParameter = 1 ;

129 counter++;

130 }
131

132 }
133 while ( counter == 1 ) ;

134

135 }
136 }
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