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In high school physics, we are taught that a pendulum (closely) approximates simple harmonic

motion. The smaller the amplitude of the oscillation the closer it is the simple harmonic motion.

Why is this the case?

Recall that in Inertial Frames of Reference and Motion in Polar Coordinates we derived that

the force on a particle in the angular direction (in polar coordinates) is

Fθ = m
(

2ṙθ̇ + rθ̈
)
.

Since the length of the string (`) is constant, ṙ = 0 and the Coriolis term vanishes. Therefore, we

have F = m`θ̈, which is the more common mrα angular form of force encountered in mechanics

when the distance from the origin does not change.

We split gravity into its components to find the angular component of the net force.
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Figure 1: This diagram shows that the tangential force is mg cos (90◦ − θ) = mg sin θ.

Observe that this force is a restoring force, so its sign must be negative. Hence:

m`θ̈ = −mg sin θ.
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Since limθ→0
sin θ
θ = 1, we may approximate sin θ with θ for small angles to obtain

θ̈ +
g

`
θ ≈ 0.

The solution to the differential equation when the approximation is replaced with equality is the

well-known sinusoidal function, derived in A Second Order ODE. This is why we say that a pen-

dulum approximates simple harmonic motion. Solving this approximation, we would find that the

pendulum’s period is given by T = 2π
√

`
g .

Let us correct this result by finding the true period of a pendulum. This is an exercise in chapter

three of Introductory Classical Mechanics. By our previous discussion, the correct differential

equation is

θ̈ +
g

`
sin θ = 0.

We use the same technique we used in A Second Order ODE, using the equality θ̈ = θ̇ dθ̇dθ to separate

variables: ∫
θ̇ dθ̇ =

g

`

∫
sin θ dθ

⇒ θ̇ =

√
2g

`
cos θ + C.

Suppose the maximum angle attained by the pendulum is θ0. Then, we can use the initial condition

θ̇
∣∣
θ0

= 0 to obtain the constant of integration C = −2g
` cos θ0. Hence,

θ̇ =

√
2g

`
(cos θ − cos θ0).

We separate variables once again to obtain

dθ√
cos θ − cos θ0

=

√
2g

`
dt.

Now if we integrate both sides over corresponding intervals, we can preserve the equality. To find

the correct interval, the bounds of integration must match up and also be useful for us (i.e. we

must choose t0, t1 3 t1 − t0 = T for the RHS and θ(t0), θ(t1) for the LHS). By symmetry, the time

it takes for the pendulum to swing a full period from θ0 and back is twice the amount of time it

takes for it to swing from θ0 to −θ0 and hence four times the amount of time it takes for it to swing

from 0 to θ0. Hence,

8

∫ θ0

0

dθ√
cos θ − cos θ0

= T

√
2g

`

⇒ T =

√
8`

g

∫ θ0

0

dθ√
cos θ − cos θ0

.
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The next part of the exercise gives the following instructions to find a series approximation of T in

terms of θ0.

“It’s more convenient to deal with quantities that go to 0 as θ → 0, so make use of the identity

cosφ = 1−2 sin2 φ
2 to write T in terms of sines. Then make the change of variables, sinx ≡ sin (θ/2)

sin (θ0/2)
.

Finally, expand your integrand judiciously in powers of (the fairly small quantity) θ0, and perform

the integrals to show...” [approximation redacted for suspense purposes].

We follow the steps. For now, we only worry about the integral, I, disregarding the constant

of
√

8`
g . Let the integrand of I be G. We use the provided half-angle identity to rewrite G as

G =
1√

cos θ − cos θ0

=
1√

1− 2 sin2 θ
2 − 1 + 2 sin2 θ0

2

=
1√
2
· 1√

sin2 θ0
2 − sin2 θ

2

.

Let us amend G and I to exclude the pesky 1√
2

and absorb this in the existing constant to make

it 2
√

`
g .

Next, we use the substitution provided. For the rest of the solution, let k = sin θ0
2 . Then,

implicit differentiation on sinx = sin (θ/2)
sin (θ0/2)

provides

dθ =
2k cosx

cos θ2
dx =

2k cosx√
1− k2 sin2 x

dx.

Now we’re ready to perform the substitution on G.

G =
1√

k2 − sin2 θ
2

=
1√

k2 − k2 sin2 θ

=
1

k cosx
.

We put this together with dθ to write I, discarding the extra factor of 2 and absorbing it into the

existing constant to make it 4
√

`
g .

I =

∫ π
2

0

dx√
1− k2 sin2 x

.

Observe that the bounds of integration have also changed due to our substitution. This particular
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integral with those particular bounds is known as the complete elliptic integral of the first kind. Its

name derives from its historical origins as it was first studied to find the arc length of an ellipse.

There is no solution in elementary functions, which is why we did not bother actually tackling the

integral when we found the exact expression for T .

Nonetheless, it is perfectly possible to obtain an infinite series for I. We continue by performing

a binomial expansion on G. This can be done with the generalized binomial formula, or simply

with the binomial series, which is the Taylor series of (1 + y)z:

(1 + y)z =
∞∑
r=0

(
z

r

)
yr,

where
(
z
y

)
is the generalized binomial coefficient which we have already encountered in The Van-

dermonde Convolution. It is defined by

(
z

r

)
=

1

r!

r−1∏
j=0

(z − j).

The convergence of the binomial series can be found with the ratio test. We must satisfy:∣∣∣∣y lim
r→∞

z − r
r + 1

∣∣∣∣ < 1,

or |y| < 1 for the series to converge absolutely. This is obviously the case because 0 < k < 1 and

0 ≤ sinx ≤ 1 and so 0 < |y| = k2 sin2 x < 1.

Substituting y = −k2 sin2 x and z = −1
2 , we have

G =
∞∑
r=0

(−1)r
(
−1/2

r

)
(k sinx)2r

= 1 +
1

2
k2 sin2 x+

3

8
k4 sin4 x+

5

16
k6 sin6 x+

35

128
k8 sin8 x+

63

256
k10 sin10 x+ ....

There are a lot of powers of sines, so naturally we derive the sine reduction formula. We wish to

reduce
∫

sinn x dx. Letting u = sinn−1 x and dv = sinx dx, we have du = (n− 1) sinn−2 x cosx dx

and v = − cosx. Integrating by parts,∫
sinn x dx = − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x cos2 x dx

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x(1− sin2 x) dx

= − sinn−1 x cosx+ (n− 1)

∫
sinn−2 x dx− (n− 1)

∫
sinn x dx

= − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx,
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where in the last step we simply rearranged the equation to solve for the desired integral.

When we integrate G term-by-term to compute the definite integral, I, we evaluate each term’s

antiderivative at the bounds of integration, subtract the evaluations, and then sum the results

across all the terms, by the linearity of integration and the fundamental theorem of calculus. Note

that every term in G has an even exponent of sine, so it suffices to evaluate the antiderivative of

sinn x at π
2 and 0 for even n only.

Observe that due to our reduction formula, every term in the antiderivative of sinn x has a

power of sine in it, excluding the last term. Since n is even, the last term is ∝
∫

sin0 x dx = x. But

this term, along with all the other terms with powers of sine, will vanish when evaluated at x = 0.

Hence, the antiderivative at evaluated at 0 is just 0.

Next, we evaluate the antiderivative at π
2 . This time, while most of the terms vanish due to

their cosines, the last term does not. We find that this last term is:

n− 1

n

(
0 +

n− 3

n− 2

(
0 +

n− 5

n− 4

(
0 + ...+

(
1

2
· π

2

)
...

)))
=
π

2

n
2
−1∏
i=0

n− (2i+ 1)

n− 2i
.

Now we can write down I using term-by-term integration on G:

I =
∞∑
r=0

∫ π
2

0
(−1)r

(
−1/2

r

)
(k sinx)2r dx

=
π

2

[
1 +

∞∑
r=1

(−1)r
(
−1/2

r

)
k2r

r−1∏
i=0

2r − (2i+ 1)

2r − 2i

]
.

We now have our series representation of T :

T = 2π

√
`

g

[
1 +

∞∑
r=1

(−1)r
(
−1/2

r

)(
sin2r θ0

2

) r−1∏
i=0

2r − (2i+ 1)

2r − 2i

]
.

Observe that it limθ0→0 T = 2π
√

`
g as expected.

We finish by finding the desired approximation. Due to the limit limθ→0
sin (θ/2)

θ = 1
2 , we can

approximate sin (θ/2) ≈ θ0
2 for small angles θ0. We can then approximate T as

T ≈ 2π

√
`

g

[
1 +

∞∑
r=1

(−1)r
(
θ0
2

)2r (−1/2

r

) r−1∏
i=0

2r − (2i+ 1)

2r − 2i

]

= 2π

√
`

g

(
1 +

1

16
θ20 +

9

1024
θ40 +

25

16384
θ60 + ...

)
.

But can we do better? Can we find an exact power series for T?

It is possible to use the Taylor series of sin2r θ0
2 and carefully combine terms to find an exact

infinite series for T . The problem is that there is no easy way to express the Taylor expansion of

5



sin2r θ0
2 explicitly as a function of r. We can make a couple observations to try to write this as

succinctly as possible

First, we observe that the term of lowest degree in the expansion of sin2r θ0
2 has degree 2r. This

follows from the fact that the Taylor series of sine has a linear term of lowest degree, which means

that when we raise that series to the 2r power, the resulting lowest degree term will have degree

2r.

This means that powers of θ0 with degree 2r0 appear in the terms corresponding with when

r = 1 through r0
2 in the series for T . We can see this by writing T as:

T = 2π

√
`

g

[
1 +

1

4
sin2 θ0

2
+

9

64
sin4 θ0

2
+

25

256
sin6 θ0

2
+ ...

]

= 2π

√
`

g

[
1 +

1

4

(
θ20
4
− θ40

48
+

θ60
1440

− ...
)

+
9

64

(
θ40
16
− θ60

96
+

θ80
1280

− ...
)

+
25

256

(
θ60
64
− θ80

256
+ ...

)
+ ...

]

= 2π

√
`

g

[
1 +

1

16
θ20 +

(
9

1024
− 1

192

)
θ40 +

(
25

16384
− 119

92160

)
θ60 + ...

]

= 2π

√
`

g

[
1 +

1

16
θ20 +

11

3072
θ40 +

173

737280
θ60 + ...

]
.

In the third line, the errors caused by using the approximation sin (θ0/2) ≈ θ0
2 on the higher order

terms are shown. In particular, the coefficient of the fourth-order term was off by 1
192 and the

coefficient of the sixth-order term was off by 119
92160 . These are relatively large corrections, though

their effects are only really observable when θ0 becomes large enough that its fourth, sixth, and

higher powers become non-negligible.

Putting this all together, we conclude

T = 2π

√
`

g

1 +
∞∑
n=2

r
2∑

r=1

(−1)r
(
−1/2

r

)
C2r(n)θn0

r−1∏
i=0

2r − (2i+ 1)

2r − 2i

 ,
where C2r(n) is the coefficient of the nth order term in the Taylor expansion of sin2r θ0

2 .
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