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In this analysis, we consider an empty cylinder of radius r, height h, and uniformly distributed

mass mc. We will be filling the cylinder with a fluid with density ρ up to a level l. We suppose

that the cylinder is symmetric about the y-axis. Naturally, the y-coordinate of the center of mass

is given by:

yc =
1

M

∫
y dm

Our cylinder is split into two sections, namely the fluid-filled section and the empty section. We

must first find the linear mass densities (λ = dm
dy ) of both. As we are assuming uniform distributions,

the λ values of both sections will be constants. The linear density of the empty section is that of

the entire cylinder when empty, which is:

λc =
mc

h

On the other hand, the linear density of the filled section is given by:

λf =
mc f section +mf f section

l
=
λcl + πρr2l

l
= λc + πρr2

It is evident that since our linear density is piecewise, so too must be our integral. Next, we find

the total mass of the system, which is fairly straightforward:

M = mc + πρr2l

Under substitution, our integral becomes:

yc =
λ

M

∫
y dy

And in our case this is:
λf
M

∫ l

0
y dy +

λc
M

∫ h

l
y dy
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We compute this:

λf
2 l

2 + λc
2 h

2 − λc
2 l

2

M
=
λf l

2 + λch
2 − λcl2

2mc + 2πρr2l

=
(λc + πρr2)l2 + λch

2 − λcl2

2mc + 2πρr2l

=
mch+ πρr2l2

2mc + 2πρr2l

As a check, we observe that letting l = h correctly predicts that yc = h
2 . In other words, a uniform

cylinder completely filled with fluid has a center of mass at the center of the cylinder.

But what configuration is the most stable? In other words, how much fluid would we need to

add in order to minimize the height of the center of mass? We calculate this by expressing the

above expression for yc as a function of l:

yc(l) =
mch+ πρr2l2

2mc + 2πρr2l

Figure 1: The graph of the parent function f(x) = 1+x2

2+2x within the relevant bounds of x = 0 and

x = h = 1.

Taking the derivative:

dyc
dl

=
1

2

(
2πρr2l(mc + πρr2l)− πρr2(mch+ πρr2l2)

(mc + πρr2l)2

)
Setting all of this equal to 0 yields:

πρr2l2 + 2mcl −mch = 0

Solving this quadratic, we have the solutions:

l =
−mc ±

√
m2
c + πρr2mch

πρr2
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But since
√
m2
c + πρr2mch > mc, we conclude that the only solution is:

lmin =
−mc +

√
m2
c + πρr2mch

πρr2

We will now derive an interesting result: when the height of the center of mass is minimized, it

coincides with the fluid level. Intuitively, this makes sense. The moment the fluid level begins to

exceed the height of the center of mass, it will start to pull the center of mass upwards. To establish

this result, we substitute our above expression for lmin into yc(l):

yc(lmin) =

mch+ πρr2
(

−mc+
√
m2

c+πρr
2mch

πρr2

)2

2mc + 2πρr2
(

−mc+
√
m2

c+πρr
2mch

πρr2

)

=
1

2
·
mch+ 1

πρr2

(
2m2

c + πρr2mch− 2mc

√
m2
c + πρr2mch

)
√
m2
c + πρr2mch

=
2

2
·
mch+ m2

c
πρr2
− mc

√
m2

c+πρr
2mch

πρr2√
m2
c + πρr2mch

=
mch+ m2

c
πρr2√

m2
c + πρr2mch

− mc

πρr2

=

(
πρr2mch+m2

c

)√
m2
c + πρr2mch

πρr2 (m2
c + πρr2mch)

− mc

πρr2

=
−mc +

√
m2
c + πρr2mch

πρr2

= lmin

Hence, the fluid level must coincide with the height of the center of mass when the latter is mini-

mized.

Is this result beautiful? After all, it is intuitively obvious. But at the heart of beauty is

simplicity. And I’d say that the madness above yielding a surprisingly simple result qualifies this

as a gem.
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