
Problem (2017 FAMAT Fall Interschool/23): Define f1(x) = sin π
2x, f2(x) = sinπx,

f3(x) = cos π2x, and f4(x) = cosπx. For some positive integer n we have many possible sequences
{ai ∈ {1, 2, 3, 4}}ni=1. For example, a possible sequence for n = 2 is {4, 1}. Then for each sequence,
define a unique function:

G{ai}(x) = fa1(fa2(fa3(...fan(x)...)))

Given that each valid sequence {ai} is equally possible, and the expected value E of
d

dx
G{ai}(x)

∣∣∣∣
x=0

over all these sequences satisfies
⌊

E
2017

⌋
= 1, find the least positive integer value of n.

Solution (Andrew Paul): The expected value E is the dot product of the n-dimensional
vectors V and P where each component of V is one of the n values of G{ai}(x) (not all n values are
necessarily unique) and each component of P is the corresponding probability of each component
in V. Since every sequence is equally possible, the components of P are all equal:

P = 〈p, p, p, ..., p〉︸ ︷︷ ︸
n components

To determine p, we simply count the number of sequences {ai} are possible for a given n. This is
simple as we always have 4 options for each element thus the number of possible sequences is 4n.
Since each sequence is equally likely, we find that p = 1

4n .

Also observe that since each component, p, of P is equal, we can factor it out when computing
P ·V. In other words, let V = 〈v1, v2, v3, ..., vn〉. Then:

E = P ·V = pv1 + pv2 + pv3 + ...+ pvn = p(v1 + v2 + v3 + ...+ vn) =
1

4n

n∑
i=1

vi

So it suffices to compute the sum of the components of V.

Now, let us differentiate G{ai}(x). Suppose that r > s and that both are integers. Let:

hs...r = hs ◦ hs+1 ◦ hs+2 ◦ ... ◦ hr

For some functions hi. Let hr...r = hr. Then by chain rule:

h′1...r =
(
h′1 ◦ h2...r

) (
h′2 ◦ h3...r

)
...
(
h′r−1 ◦ hr...r

)
h′r =

r∏
k=1

(
h′k ◦ hk+1...n

)
So the derivative of G{ai}(x) is:

d

dx
G{ai}(x) =

(
f ′a1 ◦ fa2...an

) (
f ′a2 ◦ fa3...an

)
...
(
f ′an−1

◦ fan...an
)
f ′an

We seek an expression in terms of n for the sum of these for a given n. For n = 2 we only have
42 = 16 possibilities, so we list out all of the possible derivatives of fa1 ◦ fa2 at x = 0. We find that
following are our only nonzero results:

{ai} = {1, 1} → d

dx
G{ai}(x)

∣∣∣∣
x=0

=
π2

4

1



{ai} = {1, 2} → d

dx
G{ai}(x)

∣∣∣∣
x=0

=
π2

2

{ai} = {2, 1} → d

dx
G{ai}(x)

∣∣∣∣
x=0

=
π2

2

{ai} = {2, 2} → d

dx
G{ai}(x)

∣∣∣∣
x=0

= π2

Observe that in general, allowing ai ∈ {3, 4} results in
d

dx
G{ai}(x)

∣∣∣∣
x=0

= 0 because we would end

up taking the sine of 0 which forces the entire product to become 0. So when taking the sum of

the possible values
d

dx
G{ai}(x)

∣∣∣∣
x=0

, we can ignore these cases. Thus, we have:

2∑
i=1

vi =
π2

4
+
π2

2
+
π2

2
+ π2 =

9π2

4

Now we move on to n = 3. Keeping in mind our restriction of ai ∈ {1, 2}, we look for the nonzero
cases. Notice by our work with the chain rule, the value of the derivative for three composed
functions will be the value of the inner two composed functions inside the derivative of the third
outer function times the value of the derivative of the composition of the two inner functions.

For instance, let us take a look at the case where we have f1 as both of our inner two functions.
The third outer function must be either f1 or f2 (because as mentioned before, we would otherwise
have a derivative of 0 at x = 0.) Note that the derivatives these functions are f ′1(x) = π

2 cos π2x and
f ′2(x) = π cosπx. Since for ai,j ∈ {1, 2}, we must have fai

(
faj (0)

)
= 0 as both functions would be

sine functions, we must have f ′a1 ◦ fa2 ◦ fa3 = π
2 or f ′a1 ◦ fa2 ◦ fa3 = π depending on whether we

choose fa1 = f1 or fa1 = f2 respectively.

This gives us two cases for when we have f1 as our inner two functions. The derivative eval-
uated at 0 may have the value of π2

4 ·
π
2 or π2

4 · π. Since our goal is to sum all possible values,
we consider both of these. The other cases for n = 3 are similar when choosing the inner two
functions to be any permutation of a combination of f1 and f2. There will always be a case with
an additional factor of π

2 which results from making the third outer function f1 and there will al-
ways be a case with an additional factor of π which results from making the third outer function f2.

Hence, the sum of the possibilities for n = 3 is:(π
2

)(π2
4

)
+
(π

2

)(π2
2

)
+
(π

2

)(π2
2

)
+
(π

2

) (
π2
)

+ (π)

(
π2

4

)
+ (π)

(
π2

2

)
+ (π)

(
π2

2

)
+ (π)

(
π2
)

Factoring, this reduces to:

π

2

(
π2

4
+
π2

2
+
π2

2
+ π2

)
︸ ︷︷ ︸

Where fa1=f1

+π

(
π2

4
+
π2

2
+
π2

2
+ π2

)
︸ ︷︷ ︸

Where fa1=f2

=

(
3π

2

)(
9π2

4

)
=

3∑
i=1

vi

Now the pattern is clear. For n = 4 we have:

π

2

((π
2

)(9π2

4

)
+ π

(
9π2

4

))
︸ ︷︷ ︸

Where fa1=f1

+π

((π
2

)(9π2

4

)
+ π

(
9π2

4

))
︸ ︷︷ ︸

Where fa1=f2

2



This reduces to: (
3π

2

)2(9π2

4

)
In general, we conjecture that for n ≥ 3:

n∑
i=1

vi =
9π2

4

(
3π

2

)n−2
Though this is heuristically obvious, we must still prove it using induction. It is true for our base
case of n = 3. Now suppose it is true for any k. Then, to obtain the sum for k+ 1, we use previous
observations to deduce:

k+1∑
i=1

vi =
π

2

(
9π2

4

)(
3π

2

)k−2
+ π

(
9π2

4

)(
3π

2

)k−2
But this factors as:

k+1∑
i=1

vi =
9π2

4

(
3π

2

)k−1
Completing our induction.

We’re nearly done. Recall:

E =
1

4n

n∑
i=1

vi

We now have a closed form for the summation in n. Substituting for this:

E =
9π2

4n+1

(
3π

2

)n−2
=

(3π)2

22n+2

(
(3π)n−2

2n−2

)
=

(3π)n

23n
=

(
3π

8

)n
Since

⌊
E

2017

⌋
= 1, we have 2017 ≤ E < 4034. Hence:

2017 ≤
(

3π

8

)n
< 4034

The logarithm is a monotonically increasing function, so we may take the natural logarithm and
preserve the inequality:

log 2017

log π + log 3− log 8
≤ n < log 4034

log π + log 3− log 8

We find that the LHS is approximately 46.4 and that the RHS is approximately 50.7. Since n is
an integer, we may write:

47 ≤ n ≤ 50

Hence nmin = 47 and we are done. �
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