
The Bounce Equations (Andrew Paul): Behold, the bounce equations!
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Is this insane? Yes. Is it real? Yes.

The derivation of these equations are heavy on trigonometry. First let us try to understand the structure of the
equation. The first equation gives ys⃗ in terms of gravitational acceleration (⃗ag), initial velocity of the first launch
(vi), launch angle of the first launch (θ1), the horizontal displacement (xs⃗ + S), the coefficient of restitution (e),
and the bounce number (n). For a positive integer value n, graphing the equation will give the parabolic trajectory
of the nth bounce with the appropriate horizontal shift away from the origin or initial launch point. This horizontal
shift is given by S. Consider what happens when we let n = 1. Since this is the initial launch with no horizontal
shift away from the starting point (note S = 0 when n = 1), and there is no effect of the coefficient of restitution
(because this is the first launch and there was no bounce against the ground before this), our equation should
function in the same way as our previous parabolic trajectory equation! Trying it out we have:
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Applying the Pythagorean identities on the trigonometric functions further reduces the equation to:
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2
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+ xs⃗ tan θ1 =
a⃗gx

2
s⃗

2v2i cos
2 θ1
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Holy Euler! When n = 1 our equation does indeed degenerate into the parabolic trajectory equation! The point is,
the parabolic trajectory of the projectile after each bounce can still be modeled by the parabolic trajectory
equation! After all, the parabolic trajectory equation describes every possible parabolic trajectory. The Bounce
Equations extend the parabolic trajectory equation. Essentially, the trajectories are made shorter each bounce
according to the coefficient of restitution and obviously the trajectories don’t keep starting at the origin; they start
where the previous ones left off. So deriving the Bounce Equations becomes a matter of adjusting the parabolic
trajectory equation to factor in the coefficient of restitution and the horizontal shift of the trajectory from the
starting point for each bounce.

Take another look at the parabolic trajectory equation:

ys⃗ =
a⃗gx

2
s⃗

2v2i cos
2 θ1

+ xs⃗ tan θ1

The first step in generalizing it to all bounces, not just the initial launch, is changing vi to vni and θ1 to θn. This
gives:

ys⃗ =
a⃗gx

2
s⃗

2v2ni cos
2 θn

+ xs⃗ tan θn

But recall in previous papers, we derived the two following equations:

θn = arctan (en−1 tan θ1)

vni = vi

√

e2n−2 sin2 θ1 + cos2 θ1

Substituting these into our above generalized parabolic trajectory equation gives us:

ys⃗ =
a⃗gx

2
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2v2i (e
2n−2 sin2 θ1 + cos2 θ1) cos2 [arctan (en−1 tan θ1)]

+ xs⃗ tan (arctan (e
n−1 tan θ1))

The term on the far right trivially reduces to en−1xs⃗ tan θ1, giving us:
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a⃗gx

2
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2v2i (e
2n−2 sin2 θ1 + cos2 θ1) cos2 [arctan (en−1 tan θ1)]

+ en−1xs⃗ tan θ1



Now we work on simplifying the expression cos2 [arctan (en−1 tan θ1)] in the denominator. For the time being, let
z = en−1 tan θ1. It then follows that we are trying to evaluate cos2 (arctan z) In other words, for some angle α such
that tanα = z, we must find cos2 α. To do so, we consider the following Pythagorean identity:

tan2 α+ 1 = sec2 α

Taking the reciprocal of both sides (and swapping them):

cos2 α =
1

tan2 α+ 1

Now we make the appropriate substitutions:

cos2 α =
1

z2 + 1
⇒ cos2 [arctan (en−1 tan θ1)] =

1

e2n−2 tan2 θ1 + 1

Therefore, our generalized parabolic trajectory equation is:
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2
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Algebraically simplifying gives us:
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2
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If you refer back to the Bounce Equations in the beginning of this paper, you will see that the equation we just
derived above is highly similar to the actual Bounce Equation. What we’re missing is a horizontal shift S. This
shift will change for each bounce (because each bounce will be farther and farther away from the starting point).
We also observed above that for the initial launch, the starting point of the launch is the starting point of the
projectile itself so S = 0 when n = 1. But how do we figure out the shift for the next bounces?

The starting point of the nth bounce is found by summing the displacements of the bounces that came before it.
For instance, if the first launch horizontally displaced a projectile 3 meters away from the origin, then the second
bounce starts 3 meters away from the origin. If the first launch horizontally displaced a projectile 3 meters, and the
second bounce horizontally displaced a projectile 3.5 meters, then the third bounce starts 3 + 3.5 = 6.5 meters away

from the origin. Recall that in a previous paper the horizontal displacement was found to be − v2

i sin 2θ
a⃗g

Generalizing

it for every bounce and using what was discussed above tells us that for n ≥ 2, we have:

S = −
n−1
∑

k=1

v2ki sin 2θk
a⃗g

This looks like another job for our substitutions! Letting θk = arctan (ek−1 tan θ1) and

vki = vi
√

e2k−2 sin2 θ1 + cos2 θ1, we have:
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∑
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Now we take a look at the sin [2 arctan (ek−1 tan θ1)] in the numerator. Expanding it with the double-angle identity
yields:

sin [2 arctan (ek−1 tan θ1)] = 2 sin [arctan (ek−1 tan θ1)] cos [arctan (e
k−1 tan θ1)]

We have already found what cos2 [arctan (ek−1 tan θ1)] reduces to. Once again, substituting z = ek−1 tan θ1, we
have:
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1
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⇒ cos (arctan z) =

1
√
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To find sin (arctan z), we use the rearranged Pythagorean identity sinα =
√
1− cos2 α:
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z
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Therefore, we have:

sin (2 arctan z) = 2 sin (arctan z) cos (arctan z) =
2z

z2 + 1
=

2ek−1 tan θ1
e2k−2 tan2 θ1 + 1

Putting all of this back into our equation for S:

S = −
n−1
∑

k=1

2v2i e
k−1 tan θ1(e2k−2 sin2 θ1 + cos2 θ1)

a⃗g(e2k−2 tan2 θ1 + 1)

Now notice that this expression for S is positive (since a⃗g is negative, the sum is negative, but the negative of the
sum is positive). Therefore, to produce the desired shift to the right, we must subtract S from xs⃗. However, we can
equivalently drop the negative sign in front of the sum in the expression for S and then add it to xs⃗.

So finally we conclude for n ≥ 2 we have:

S =
n−1
∑

k=1

2v2i e
k−1 tan θ1(e2k−2 sin2 θ1 + cos2 θ1)

a⃗g(e2k−2 tan2 θ1 + 1)

For n = 1 we have:
S = 0

And the trajectory of the nth bounce is given by:

ys⃗ =
a⃗g(xs⃗ + S)2(e2n−2 tan2 θ1 + 1)

2v2i (e
2n−2 sin2 θ1 + cos2 θ1)

+ en−1(xs⃗ + S) tan θ1

Which we can sum up simply as:

ys⃗ =
a⃗g(xs⃗ + S)2(e2n−2 tan2 θ1 + 1)

2v2i (e
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{
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Fig 4.1: 3 bounces that were generated with the Bounce Equations. The initial velocity depicted is 100 m/s 

at an angle of 60˚ under Earth’s gravity of −9.8 m/s2 and a coefficient of restitution of 0.75. 
 
 
 

 
Fig 4.2: 6 bounces of the superball described in The Superball Problem generated with the Bounce 

Equations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

4 


