
Problem 1: Find all pairs (x, y) of real numbers such that

(x+ y)(x+ 2y) = (−x+ 3y)(4x− y) = 2018

Solution: Observe that we have:

(x+ y)(x+ 2y) = (−x+ 3y)(4x− y)

Expanding:
x2 + 3xy + 2y2 = −4x2 + 13xy − 3y2

Which rearranges to:
5x2 − 10xy + 5y2 = 0

Which factors as:
5(x− y)2 = 0

Hence we have x = y. Now our solution is clear. Upon substituting x = y into our other two equations, we
find:

(x+ y)(x+ 2y) = 2018⇒ (2x)(3x) = 2018⇒ x = y = ±
√

1009

3

And:
(−x+ 3y)(4x− y) = 2018⇒ (2x)(3x) = 2018

Which yields the same solutions. Hence our solutions (x, y) are

(√
3027

3
,

√
3027

3

)
and

(
−
√

3027

3
,−
√

3027

3

)
.
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Problem 2: Solve in real numbers the equation

√
x+
√

2018− x = 56

Solution: We square both sides first and then solve as follows:(√
x+
√

2018− x
)2

= 562

x+ 2
√

2018x− x2 + 2018− x = 3136√
2018x− x2 = 559

x2 − 2018x+ 5592 = 0

Now we observe that this factors as follows:

(x− 169)(x− 1849) = 0

Hence x = 169 and x = 1849 . Substituting back into our original equation reveals that neither of these
solutions are extraneous.
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Problem 3: Find all pairs (p, q) of twin primes such that

(2p+ q)3 = p3 + 2q3 + 2018

Solution: If p and q are twin primes, we either have p = q + 2 or q = p + 2. We examine these cases
separately.

Case 1 (p = q + 2): We make this substitution into our equation, which yields:

(3q + 4)3 = (q + 2)3 + 2q3 + 2018

Upon expansion and rearrangement, this becomes:

24q3 + 102q2 + 132q − 1962 = 0

Using synthetic division, we can find that q − 3 is a factor. Hence we can factor the polynomial as:

6(q − 3)(4q2 + 29q + 109) = 0

We compute the discriminant of the quadratic factor:

b2 − 4ac = 292 − 4 · 4 · 109 = −903 < 0

Which implies that the above factorization is irreducible over R. Hence q = 3 and p = 5 is the only valid
solution in this case.

Case 2 (q = p+ 2): We make this substitution in to our equation, which yields:

(3p+ 2)3 = p3 + 2(p+ 2)3 + 2018

Upon expansion and rearrangement, this becomes:

3p3 + 12p2 + 24p+ 2034

After testing all possible rational roots suggested by the Rational Root Theorem, we deduce that there are
no rational roots to this equation.

Hence, the only solution (p, q) is (5, 3) .
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Problem 4: Let a, b, c be nonnegative real numbers such that a2 + b2 + c2 ≤ 1. Prove that

(9a+ 16b+ 41c)(5a+ 12b+ 43c) < 2018

Solution: We observe:

a2 + b2 + c2 ≤ 1⇒ 2009(a2 + b2 + c2) ≤ 2009⇒ (49 + 196 + 1764)(a2 + b2 + c2) ≤ 2009

Also note that by the Cauchy-Schwarz Inequality, we have:

(49 + 196 + 1764)(a2 + b2 + c2) ≥
(
a
√

49 + b
√

196 + c
√

1764
)2

= (7a+ 14b+ 42c)2

Combining these two observations yields:

(7a+ 14b+ 42c)2 ≤ 2009(a2 + b2 + c2) ≤ 2009

Since a, b, c ≥ 0, we may apply the AM-GM Inequality. This tells us that we have:√
(9a+ 16b+ 41c)(5a+ 12b+ 43c) ≤ 1

2
(9a+ 16b+ 41c+ 5a+ 12b+ 43c)

Upon simplification and rearrangement this becomes:

(9a+ 16b+ 41c)(5a+ 12b+ 43c) ≤ (7a+ 14b+ 42c)2

But we have already determined the maximum possible value of the RHS, namely 2009. Hence, we conclude:

(9a+ 16b+ 41c)(5a+ 12b+ 43c) ≤ (7a+ 14b+ 42c)2 ≤ 2009 < 2018

As desired. �
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Problem 5: Find all pairs (a, b) of positive integers such that a3 − 6b2 = 2018 and b3 − 6a2 = 155 hold
simultaneously.

Solution: We observe that by subtracting the second equation from the first, we obtain:

a3 − b3 + 6a2 − 6b2 = 1863

On the other hand, adding the two equations yields:

a3 + b3 − 6a2 − 6b2 = 2173

Both of these are Diophantine equations which we can solve by equating factors of the RHS to the factors of
the polynomial on the LHS. Observe that even though 2173 > 1863, we have 2173 = 41 ·53 and 1863 = 34 ·23
hence 2173 has four factors and 1863 has ten and our computation is a lot shorter if we add both equations.
Unfortunately, our second polynomial which results from summing the two equations is irreducible over Z.
This forces us to subtract the equations. We continue by factoring:

a3 − b3 + 6a2 − 6b2 = (a− b)(a2 + ab+ b2) + 6(a− b)(a+ b)

= (a− b)(a2 + ab+ b2 + 6a+ 6b)

= 1863

The factors of 1863 are:
{1, 3, 9, 23, 27, 69, 81, 207, 621, 1863}

We examine each of the ten cases separately. Let ∆ denote the discriminants of the quadratic factors in
the following computations. We will repeatedly apply the observation that if f(x) is a quadratic function in
Z[x], and if the roots of f are integers, then the discriminant ∆ must be a perfect square.

Case 1 (a− b = 1): We substitute a = b+ 1 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 1)2 + b(b+ 1) + b2 + 6(b+ 1) + 6b

= 3b2 + 15b+ 7

= 1863

Hence:
3b2 + 15b− 1856 = 0

But we have:
∆ = 152 + 4 · 3 · 1856 = 22497

But
√

22497 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).
Case 2 (a− b = 3): We substitute a = b+ 3 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 3)2 + b(b+ 3) + b2 + 6(b+ 3) + 6b

= 3b2 + 21b+ 27

= 621

Hence:
3b2 + 21b− 594 = 0

But we have:
∆ = 212 + 4 · 3 · 594 = 7569

We have
√

7569 = 87, which implies that we at least have b ∈ Q. Going further, we see that the quadratic
actually factors as:

3(b+ 18)(b− 11) = 0

Since we are are looking for solutions in Z+, the solution b = −18 is extraneous which leaves us with the
solution b = 11 and a = 14 in this case.
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Case 3 (a− b = 9): We substitute a = b+ 9 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 9)2 + b(b+ 9) + b2 + 6(b+ 9) + 6b

= 3b2 + 39b+ 135

= 207

Hence:
3b2 + 39b− 72 = 0

But we have:
∆ = 392 + 4 · 3 · 72 = 2385

But
√

2385 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).
Case 4 (a− b = 23): We substitute a = b+ 23 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 23)2 + b(b+ 23) + b2 + 6(b+ 23) + 6b

= 3b2 + 81b+ 667

= 81

Hence:
3b2 + 81b+ 586 = 0

But we have:
∆ = 812 − 4 · 3 · 586 = −471

But
√
−471 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).

Case 5 (a− b = 27): We substitute a = b+ 27 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 27)2 + b(b+ 27) + b2 + 6(b+ 27) + 6b

= 3b2 + 83b+ 891

= 69

Hence:
3b2 + 83b+ 822 = 0

But we have:
∆ = 832 − 4 · 3 · 822 = −2975

But
√
−2975 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).

Case 6 (a− b = 69): We substitute a = b+ 69 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 69)2 + b(b+ 69) + b2 + 6(b+ 69) + 6b

= 3b2 + 219b+ 5175

= 27

Hence:
3b2 + 219b+ 5148 = 0

But we have:
∆ = 2192 − 4 · 3 · 5148 = −13815

But
√
−13815 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).

Case 7 (a− b = 81): We substitute a = b+ 81 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 81)2 + b(b+ 81) + b2 + 6(b+ 81) + 6b

= 3b2 + 255b+ 7047

= 27
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Hence:
3b2 + 255b+ 7047 = 0

But we have:
∆ = 2192 − 4 · 3 · 5148 = −13815

But
√
−13815 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).

Case 8 (a− b = 207): We substitute a = b+ 207 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 207)2 + b(b+ 207) + b2 + 6(b+ 207) + 6b

= 3b2 + 633b+ 44091

= 9

Hence:
3b2 + 633b+ 44082 = 0

But we have:
∆ = 6332 − 4 · 3 · 44082 = −128295

But
√
−128295 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).

Case 9 (a− b = 621): We substitute a = b+ 621 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 621)2 + b(b+ 621) + b2 + 6(b+ 621) + 6b

= 3b2 + 1875b+ 389367

= 3

Hence:
3b2 + 1875b+ 389364 = 0

But we have:
∆ = 18752 − 4 · 3 · 389364 = −1156743

But
√
−1156743 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).

Case 10 (a− b = 1863): We substitute a = b+ 1863 into the second factor to obtain:

a2 + ab+ b2 + 6a+ 6b = (b+ 1863)2 + b(b+ 1863) + b2 + 6(b+ 1863) + 6b

= 3b2 + 5601b+ 3481947

= 1

Hence:
3b2 + 5601b+ 3481946 = 0

But we have:
∆ = 56012 − 4 · 3 · 3481946 = −10412151

But
√
−10412151 /∈ Z hence b /∈ Z and this case does not yield a lattice point (a, b).

We have exhausted our set of factors and can conclude that our only solution (a, b) is (14, 11) which we

found in Case 2.

Remark: At some point we can see that our discriminants are consistently negative. Indeed, it can be
shown that if we have a− b = c, to have ∆ > 0, c must satisfy the inequality:

−3(−7452− 48c+ c3)

c
> 0

The solution to this inequality is:
0 < c < r

Where r is the root of the function in c on the LHS of the inequality above. A computational engine provides:

r =
1

3

3

√
100602− 54

√
3469745 + 3

√
2
(

1863 +
√

3469745
)
≈ 20.3512
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Problem 6: Solve in positive real numbers the system of equations{
(x+ 3y)

√
x = 2018− 1

3

√
x

(3x+ y)
√
y = 2078 + 1

3

√
x

Solution: We let a =
√
x and b =

√
y. Then our system becomes:{

(a2 + 3b2)a = 2018− 1
3a

(3a2 + b2)b = 2078 + 1
3a

Naturally, we begin by adding the two equations:

(a2 + 3b2)a+ (3a2 + b2)b = 4096

We have 4096 = 212 which makes us suspect that the LHS can be factored as a square or maybe even a cube.
Seeing the coefficients of 3 hint that it is probably a cube. Indeed, we see that this is true upon expansion:

a3 + 3a2b+ 3ab2 + b3 = 4096

Which factors as:
(a+ b)3 = 4096

From this we obtain a = 16− b. Substituting this into the first equation, we find obtain:

((16− b)2 + 3b2)(16− b) = 2018− 16− b
3

Expanding and rearranging:

−4b3 + 96b2 − 2305

3
b+

6250

3
= 0

The Rational Root Theorem yields b = 10 as a root. The cubic factors as:

−1

3
(b− 10)(12b2 − 168b+ 625)

The discriminant of the quadratic factor is negative, hence b = 10 is the only solution. Since a+ b = 16, we

must have a = 6 and upon reversing our substitution, we find our only solution (x, y) to be (36, 100) .
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Problem 7: Let f : Z+×Z+ → Z+ be a function such that f(1, 1) = 1, f(m+ 1, n) = f(m,n) +m, and
f(m,n+ 1) = f(m,n)− n for all positive integers m and n. Find all pairs (a, b) such that f(a, b) = 2018.

Solution: We wish to find a, b ∈ Z+ that satisfy:

f(a, b) = 2018

Note that the only numerical value we know is f(1, 1) = 1. So naturally, we figure that we can whittle down
f(a, b) to something explicitly in terms of f(1, 1), a, and b. Let’s first reduce a down to 1 using the recursive
definition provided. We have:

f(a, b) = f(a− 1, b) + a− 1

= f(a− 2, b) + a− 1 + a− 2

= f(a− 3, b) + a− 1 + a− 2 + a− 3

...

= f(a− (a− 1), b) + a+ ...+ a︸ ︷︷ ︸
a−1 terms

−(1 + 2 + ...+ (a− 1))

= f(1, b) + a(a− 1)− a(a− 1)

2
= 2018

Now we focus on reducing b in the f(1, b) term:

f(1, b) = f(1, b− 1)− (b− 1)

= f(1, b− 2)− (b− 1 + b− 2)

= f(1, b− 3)− (b− 1 + b− 2 + b− 3)

...

= f(1, b− (b− 1))− (b+ ...+ b︸ ︷︷ ︸
b−1 terms

) + (1 + 2 + ...+ (b− 1))

= f(1, 1)− b(b− 1) +
b(b− 1)

2

Putting all of this together yields:

f(1, 1)− b(b− 1) +
b(b− 1)

2
+ a(a− 1)− a(a− 1)

2
= 2018

Since f(1, 1) = 1, we can eliminate it by subtracting 1 from both sides:

a(a− 1)− a(a− 1)

2
− b(b− 1) +

b(b− 1)

2
= 2017

This simplifies as:
1

2
a(a− 1)− 1

2
b(b− 1) = 2017

Now we have a two variable Diophantine polynomial! How familiar! First, we multiply by 2:

a(a− 1)− b(b− 1) = 4034

This expands as:
a2 − a− b2 + b = 4034

Now we can factor the LHS:

a2 − a− b2 + b = (a− b)(a+ b)− (a− b)
= (a− b)(a+ b− 1) = 4034
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The factors of 4034 are:
{±1,±2,±2017,±4034}

Observe that we don’t need to worry about the cases with negative factors because we can only have
a+ b− 1 < 0 if a+ b < 1 which is not possible for a, b ∈ Z+. Thus we test the four positive cases.

Case 1 (a− b = 1): This gives us 2b = 4034 and hence b = 2017 and a = 2018.
Case 2 (a− b = 2): This gives us 2b+ 1 = 2017 and hence b = 1008 and a = 1010
Case 3 (a− b = 2017): This gives us 2b+ 2016 = 2 giving us a negative b which is extraneous.
Case 4 (a− b = 4034): This gives us 2b+ 4033 = 1 giving us a negative b which is extraneous.

Hence the only solutions (a, b) are (1010, 1008) and (2018, 2017) .
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Problem 8: Solve in positive integers the equation

x3 + y3 + 3xyz = z3 + 2018

Partial Solution: We substitute w = −z for convenience. The equation becomes:

x3 + y3 + w3 − 3xyw = 2018

Observe that this factors as:

(x+ y + w)(x2 + y2 + w2 − (xy + xw + yw)) = 2018

Now suppose that x, y, w are the roots of the monic cubic polynomial:

µ3 + bµ2 + cµ+ d = 0

Then by Vieta’s formulas, we have:
−b = x+ y + w

c = xy + xw + yw

−d = xyw

So our factorization becomes:
−b(b2 − 3c) = 2018

Next, note that since x, y, w ∈ Z, we must have b, c, d ∈ Z. Hence, the above equation is Diophantine, and
after some computation, we find the solutions (b, c):

{(−2018, 1357441), (−2,−335), (1, 673), (1009, 339361)}

Now observe that since x, y, z > 0, we must have w < 0 and xyw < 0 which means d > 0. By Descartes’
Rule of Signs, for our cubic to have two positive roots, we must have exactly two sign changes between the
coefficients in the cubic. Observe that with the given constraints (the cubic is monic and d is positive), this
is only possible if b and c have opposing signs:

µ3 − |b|µ2 + |c|µ+ d

µ3 + |b|µ2 − |c|µ+ d

Or are both negative:
µ3 − |b|µ2 − |c|µ+ d

This means we can eliminate (1, 673) and (1009, 339361) for our possible pairs (b, c).

There are two ways we can go from here. We can try hunting down d. I tried doing this by equating the
factorization of the original equation in terms of the coefficients of our cubic to the expansion with the sum
of the cubes and the product of x, y, and w in terms of the coefficients of our cubic. I used Newton’s Sums
to write the sum of the cubes in terms of the coefficients of the cubic but upon writing the equation, I was
getting things like 0 = 0 which implied that I was essentially using circular reasoning. This makes sense as
Newton’s Sums are derived by breaking down the sum of the nth powers of the roots of a polynomial into
the symmetric sums of the roots.

The other approach is to proceed by consider each case remaining for (b, c) separately:
Case 1 (b = −2018): In this case, we have x + y + w = 2018. We get rid of a degree of freedom by

noting w = 2018− (x+ y). Now, the equation −b(b2 − 3c) = 2018 becomes:

20182 − 3(xy + x(2018− (x+ y)) + y(2018− (x+ y))) = 1

This rearranges to:
3x2 + 3xy − 6054x+ 3y2 − 6054y + 4072323 = 0
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Now this amounts to finding lattice points on a rotated ellipse! Not sure how to do that!
Case 2 (b = −2): Once again, the problem boils down to finding lattice points on a rotated ellipse.

In conclusion, I am fairly certain that I’m going about this the wrong way (I highly doubt that where
I’m going is the intended solution!) This seems like one of those problems that hinges on a key observation.

But aren’t they all?
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Problem 9: Let a and b ∈ (0, π2 ) such that

169 sin a sin b+ 559 sin (a+ b) + 1849 cos a cos b = 2018

Evaluate tan a tan b.

Solution: We begin by expanding the sine of the angle sum.

169 sin a sin b+ 559 sin a cos b+ 559 sin b cos a+ 1849 cos a cos b = 2018

This equation factors as:
(13 sin a+ 43 cos a)(13 sin b+ 43 cos b) = 2018

Now we force some manipulations:

(13 sin a+ 43 cos a)(13 sin b+ 43 cos b) =
2018

2018
(13 sin a+ 43 cos a)(13 sin b+ 43 cos b)

=
2018(√
2018

)2 (13 sin a+ 43 cos a)(13 sin b+ 43 cos b)

= 2018

(
13√
2018

sin a+
43√
2018

cos a

)(
13√
2018

sin b+
43√
2018

cos b

)
Observe that since 132 + 432 = 2018, we have cos θ = 13√

2018
and sin θ = 43√

2018
where θ = arctan 43

13 . Hence,

we can write:

2018

(
13√
2018

sin a+
43√
2018

cos a

)(
13√
2018

sin b+
43√
2018

cos b

)
= 2018 (cos θ sin a+ sin θ cos a) (cos θ sin b+ sin θ cos b)

= 2018 sin (a+ θ) sin (b+ θ)

All of this is equivalent to 2018, hence:

sin (a+ θ) sin (b+ θ) = 1

That is, the two sines are reciprocals of each other. However, note that the sine of any real angle is always
between −1 and 1 inclusive (as this is the range of the sine function). Furthermore, since a, b ∈

(
0, π2

)
and

θ = arctan 43
13 , we can improve the bounds of our sines to 0 (exclusive) and 1 (inclusive). Now observe:

1

n
≥ n ∀n ∈ (0, 1]

Which we can obtain by dividing the inequality n ≤ 1 by n but not flipping the inequality sign (hence also
implying the condition n > 0). Equality occurs iff n = 1.

We have already noted that the sine of a real angle cannot exceed 1. The only way, then, that the product
of two sines can be 1 is by either both of them being 1 or −1. We can rule out the latter since a + θ and
b+ θ are at most in quadrant II (which still yields a positive sine). Hence the argument of the sines must be
π
2 and we have:

a+ θ = b+ θ =
π

2

This immediately yields a = b = π
2 − arctan 43

13 . Now all we have left is computation.

tan a tan b = tan2 a = tan2

(
π

2
− arctan

43

13

)
The tangent angle-difference formula does not work when one of the angles is π

2 since the tangent function
is not defined for this angle. Thus we split it up into sines and cosines:

tan2

(
π

2
− arctan

43

13

)
=

(
sin
(
π
2 − arctan 43

13

)
cos
(
π
2 − arctan 43

13

))2
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We have:

sin

(
π

2
− arctan

43

13

)
= sin

π

2
cos

(
arctan

43

13

)
− sin

(
arctan

43

13

)
cos

π

2

= cos

(
arctan

43

13

)
=

13√
2018

And:

cos

(
π

2
− arctan

43

13

)
= cos

π

2
cos

(
arctan

43

13

)
+ sin

(
arctan

43

13

)
sin

π

2

= sin

(
arctan

43

13

)
=

43√
2018

Hence our answer is: (
13√
2018
43√
2018

)2

=

(
13

43

)2

=
169

1849
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Problem 10: Prove that, for each positive integer n, 2018n can be written as sum of three nonzero
perfect squares.

Solution: Legendre’s Three-Square Theorem states that a positive integer m can be written as the sum
of three squares iff:

m 6= 4p(8q + 7)

Where p, q ∈ Z. Hence, we must show that 2018n is never of this form for positive integers n. We will split
this into two cases, based on the parity of n.

Case 1 (n is odd): 2018 has a prime factorization of 2 · 1009. When raised to an odd power, we see
that 2 · 1009 has an odd number of factors of 2 and is therefore not a multiple of a power of 4. Hence by
Legendre’s Theorem, we can write 2018n as the sum of three squares.

Case 2 (n is even): In this case, 2018n is indeed a multiple of a power of 4 as there are an even number
of factors of 2. Hence, we must show that the remaining factors of 1009, together with a product of 1009n,
cannot be expressed in the form 8q + 7 for some integer q. This is equivalent to showing that:

1009n 6≡ 7 (mod 8)

But this is trivial as we observe that 1009 ≡ 1 (mod 8), hence:

1009n ≡ 1 6≡ 7 (mod 8)

Which is enough to imply that 2018n can be written as a sum of three squares in this case.

The issue here is that Legendre’s Three-Square Theorem allows some of the squares to be 0 whereas the
problem asks us to prove that 2018n can be written as the sum of three nonzero squares. To do this, we
proceed by induction. Our base case is:

442 + 92 + 12 = 2018

Now for our inductive step. Suppose that the equation a2 + b2 + c2 = 2018k holds for a, b, c, k ∈ Z+. We
split this into two cases, depending on the parity of k.

Case 1 (k is even):

2018k+1 = 2018(a2 + b2 + c2)

= (442 + 92 + 12)(a2 + b2 + c2)

= 442(a2 + b2 + c2) + 92(a2 + b2 + c2) + (a2 + b2 + c2)

= 442 · 2018k + 92 · 2018k + 2018k

If k is even, then we may write k = 2j for some nonnegative integer j, and the result immediately follows:

442 · 2018k + 92 · 2018k + 2018k = 442 · 20182j + 92 · 20182j + 20182j

= (44 · 2018j)2 + (9 · 2018j)2 + (2018j)2

We have a sum of three squares, completing our induction.
Case 2 (k is odd): If k is odd, then we may write k = 2j + 1 for some nonnegative integer j. Now we

have:
2018k+1 = 20182

(
20182j

)
Now we will rely upon the following lemma:

Lemma: If a positive integer is expressible as the sum of three positive squares, then so is its square.

Proof: Let a positive integer n be expressible as:

n = x2 + y2 + z2
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For positive integers x, y, z. Then:

n2 = (x2 + y2 + z2)2

= x4 + y4 + z4 + 2x2y2 + 2x2z2 + 2y2z2

Now for some algebraic sleight-of-hand. We subtract double of the terms with a coefficient of two and add
them as well yielding:

x4 + y4 + z4 + 2x2y2 + 2x2z2 + 2y2z2 = x4 + y4 + z4 − 2x2y2 − 2x2z2 − 2y2z2 + 4x2y2 + 4x2z2 + 4y2z2

= x4 + y4 + z4 − 2x2y2 − 2x2z2 − 2y2z2 + (2xy)2 + (2xz)2 + (2yz)2

This is an issue as we have three squares but extra terms! This motivates us to remove one of the squares
and try to muster up a square from the remaining terms:

n2 = x4 + y4 + z4 + 2x2y2 − 2x2z2 − 2y2z2 + (2xz)2 + (2yz)2

The extra terms will factor! We can do this by inspection or by viewing the multivariate polynomial as
univariate and then testing factors by the Factor Theorem. We have:

n2 = (x2 + y2 − z2)2 + (2xz)2 + (2yz)2

Which is a sum of three squares, as desired.

Applying this lemma, we let x2 + y2 + z2 = 20182, where of course x, y, z ∈ Z \ {0}, and we have:

2018k+1 = 20182
(
20182j

)
= (x2 + y2 + z2)

(
20182j

)
=
(
2018jx

)2
+
(
2018jy

)2
+
(
2018jz

)2
We have a sum of three squares, which completes our induction. �
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