
The 5th AMO4 Solutions

Andrew Paul ∗

May 11, 2019

∗Compiled from various competitions as well as original problems

1



SOLUTIONS

P1 Solution: Suppose to the contrary that there existed such a function f . Observe that f must have a
constant term, as otherwise f is divisible by x and cannot always be prime. Suppose that this constant term
is k. But then, f(ck) is a multiple of k for c ∈ Z, contradiction. �

P2 Solution: We let va and vb be the speeds of particles A and B respectively. We are given that
5vb = 4va. Let the distance traveled by the particles modulo b− a be ra and rb:

ra = vat (mod b− a)

The collisions always then occur where ra + rb = b− a.
Some time afterwards, particle A reaches b. Let this time be t1. At t1, we have rb = vbt1 = 4

5vat1. This
shows that we need a further 1

4 t1 for B to reach a, at which point A will be a quarter of the way back to a
(since t1 is the time it takes for A to travel a distance of b− a).

Let t2 be the time it takes to get the configuration where B is at a to the second collision. The distance
traversed by both particles must be 3

4 (b− a). We have:

t2

(
4

5
va + va

)
=

3

4
(b− a)

But notice that 4
5vat2, the distance traveled by B, must be 47 − a. Therefore, we have t2

(
4
5va + va

)
=

9
5vat2 = 9

4 (47− a). Hence:
9

4
(47− a) =

3

4
(b− a)

Which is:
2a+ b = 141

Now we continue. A clearly reaches a before B reaches b. Note that it takes 5
4va

(b− 47) units of time for B

to reach b. In that same amount of time, A must travel a distance of 5
4 (b − 47). After reaching a, it turns

back around for a distance of:
5

4
(b− 47)− 47 + a =

5

4
b+ a− 423

4

Which puts A at a position of 5
4b + 2a − 423

4 . Hence, for the third collision, the distance traveled by both
particles together must be:

t3

(
4

5
va + va

)
=

423

4
− b

4
− 2a

Where t3 is the time from the point where B arrives at b to the third collision. Here, 4
5vat3, the distance

traveled by B, must be b− 255. Therefore, we have t3
(

4
5va + va

)
= 9

5vat3 = 9
4 (b− 255). Hence:

9

4
(b− 255) =

423

4
− b

4
− 2a

Which rearranges to:
4a+ 5b = 1359

Now we have the system: {
2a+ b = 141
4a+ 5b = 1359

Adding the two equations and dividing by 6 yields a+ b = 250 .
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P3 Solution: First we observe that if n has odd factors, say, n = ox where o is odd, then we can write:

nn + 1 = nox + 1 = (nx)o + 1o

Which can be factored as a sum of odd powers, and hence cannot be prime. This implies that n must be a
power of 2. Furthermore, the base 2 logarithm of n cannot have any odd factors because:

(2ox)n + 1 = (2nx)o + 1

Which can again be factored as a sum of odd powers. The powers of 2 less than or equal to 15 with no odd
factors in their base 2 logarithms are 1, 2, and 4 yielding the primes 2, 5, and 257, giving us an answer of
7 .

P4 Solution: Since ABCD is an isosceles trapezoid, both diagonals have equal length. Let AD = BC = x.
By Ptolemy’s Theorem:

x2 + 35 · 75 = 732 ⇒ x = 52

Now we observe that 4PAB ∼ 4PDC. Letting PA = PB = y, we have:

y

35
=
y + 52

75
⇒ y =

91

2

Note that the power of the point P with respect to the circumcircle of ABCD (which we will express as Ω)
can be expressed in two ways:

PowΩ P = PA · PD = OP 2 − r2

Where r is the radius of Ω. Hence, it suffices to compute r. The area of a triangle can be expressed as:

[ABC] =
abc

4R

Where R is the circumradius of the triangle. In this case, with 4ABC, we have R = r, hence:

[ABC] =
abc

4r

Since we know the side lengths of the triangle, we can compute [ABC] using Heron’s formula. This yields:

[ABC] =
√

80 · 45 · 28 · 7 = 840

Hence:

r =
52 · 73 · 35

4 · 840
=

949

24

So we conclude:

OP =
√
r2 + PA · PD =

√
9492

242
+

91

2

(
91

2
+ 52

)
=

1859

24
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P5 Solution: We rely upon the following lemma:

Lemma: Let (n+ 1)q > np be the closest multiple of n+ 1 to np. Then p ≥ q.

Proof: Suppose that to the contrary, (n + 1)r > np was the closest multiple of n + 1 to np, where
r > p. Then, the difference between the two numbers is:

nr + r − np = n(r − p) + r

Observe that r − p ≥ 1 ⇒ n(r − p) ≥ n and r > 1 (by implicit assumption). Adding these two inequalities
yields:

n(r − p) + r > n+ 1

The maximum possible distance between a multiple of n and the closest larger multiple of n + 1 is n + 1,
and this occurs when the aforementioned multiple of n is also a multiple of n+ 1. However, we have shown
that the distance between (n + 1)r and np is greater than n + 1, contradicting our initial assumption that
(n + 1)r was the closest multiple of n + 1 that was larger than np. Hence ∃q ≤ p such that (n + 1)q is the
closest larger multiple of n+ 1 to np. �

We define a new sequence such that pn = an
n for n > 0. It suffices to show that limn→∞ pn exists.

Our lemma implies that the sequence of pn is a decreasing sequence. We observe that if we constructed
a sequence αn+1 by always rounding αn down to the nearest n, then we must have bn = α

n ≤ pn. Under this
definition of bn, we have the recursive definition:

bn+1 =

⌊
n

n+ 1
bn

⌋
We can express the floor in terms of the fractional part:

bn+1 =
n

n+ 1
bn −

{
n

n+ 1
bn

}
Rearranging:

n

n+ 1
bn − bn+1 =

{
n

n+ 1
bn

}
The fractional part is between 0 (inclusive) and 1 (exclusive). Hence:

0 ≤ n

n+ 1
bn − bn+1 < 1

The first inequality in the chain yields:

bn+1 ≤
n

n+ 1
bn

So the sequence of bn is decreasing. Furthermore, since b1 > 0, all bn must be positive as well, so the sequence
of bn is bounded. Hence, limn→∞ bn exists.

Since pn is bounded below by bn and is also decreasing, limn→∞ pn must exist as well, and we are done.
�
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