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SOLUTIONS

P1 Solution: Suppose to the contrary that there existed such a function f. Observe that f must have a
constant term, as otherwise f is divisible by z and cannot always be prime. Suppose that this constant term
is k. But then, f(ck) is a multiple of k for ¢ € Z, contradiction. O

P2 Solution: We let v, and v, be the speeds of particles A and B respectively. We are given that
5up = 4v,. Let the distance traveled by the particles modulo b — a be r, and ry:

re = Vgt (mod b— a)

The collisions always then occur where r, + 1, = b — a.

Some time afterwards, particle A reaches b. Let this time be t1. At t1, we have r, = vpt; = %vatl. This
shows that we need a further itl for B to reach a, at which point A will be a quarter of the way back to a
(since ¢; is the time it takes for A to travel a distance of b — a).

Let t2 be the time it takes to get the configuration where B is at a to the second collision. The distance
traversed by both particles must be 2(b — a). We have:

4 3
to (5% + va> = Z(b —a)

But notice that %’Uatg, the distance traveled by B, must be 47 — a. Therefore, we have ¢y (%va + va) =
Svaty = 2(47 — a). Hence:

9 3
1(47— a) = Z(b_ a)

Which is:
2a + b =141

Now we continue. A clearly reaches a before B reaches b. Note that it takes &(b — 47) units of time for B

to reach b. In that same amount of time, A must travel a distance of 2(b — 47). After reaching a, it turns

back around for a distance of: 5 5 193
Which puts A at a position of gb + 2a — 423 Hence, for the third collision, the distance traveled by both

-
particles together must be:

Where t3 is the time from the point where B arrives at b to the third collision. Here, %Uatg, the distance

traveled by B, must be b — 255. Therefore, we have t3 (%va + 11,1) = gvatg = %(b — 255). Hence:

9 423 b
Z(b—255) = —2 — - _2
1 (b — 255) 1 12
Which rearranges to:
4a + 5b = 1359
Now we have the system:
2a + b =141
4a + 5b = 1359

Adding the two equations and dividing by 6 yields a + b = .



P3 Solution: First we observe that if n has odd factors, say, n = ox where o is odd, then we can write:
n"+1=n"+4+1=(n")°+1°

Which can be factored as a sum of odd powers, and hence cannot be prime. This implies that n must be a
power of 2. Furthermore, the base 2 logarithm of n cannot have any odd factors because:

(20.’1:)71, + 1 — (271’1‘)0 _|_ 1

Which can again be factored as a sum of odd powers. The powers of 2 less than or equal to 15 with no odd
factors in their base 2 logarithms are 1, 2, and 4 yielding the primes 2, 5, and 257, giving us an answer of

[7]

P4 Solution: Since ABCD is an isosceles trapezoid, both diagonals have equal length. Let AD = BC = z.
By Ptolemy’s Theorem:
2% +35-75=73% = z = 52

Now we observe that APAB ~ APDC. Letting PA = PB =y, we have:

Yy  y+92 _9i

35 YT

Note that the power of the point P with respect to the circumcircle of ABC'D (which we will express as )
can be expressed in two ways:
Powg P = PA-PD = OP? —¢?

Where 7 is the radius of €. Hence, it suffices to compute r. The area of a triangle can be expressed as:

abe
ABC) = —

Where R is the circumradius of the triangle. In this case, with AABC, we have R = r, hence:

abc
[ABC] = s

Since we know the side lengths of the triangle, we can compute [ABC] using Heron’s formula. This yields:
[ABC] = v/80-45-28 -7 = 840

Hence:
52-73-35 949
o 4-840 0 24

So we conclude:

2
OPZWPA.PD:W (L) [0

242 2 24




P5 Solution: We rely upon the following lemma:
Lemma: Let (n + 1)g > np be the closest multiple of n + 1 to np. Then p > q.

Proof: Suppose that to the contrary, (n 4+ 1)r > np was the closest multiple of n + 1 to np, where
r > p. Then, the difference between the two numbers is:

nr+r—np=n(r—p) +r

Observe that r —p > 1 = n(r — p) > n and r > 1 (by implicit assumption). Adding these two inequalities
yields:
nir—p)+r>n+1

The maximum possible distance between a multiple of n and the closest larger multiple of n + 1 is n + 1,
and this occurs when the aforementioned multiple of n is also a multiple of n + 1. However, we have shown
that the distance between (n 4+ 1)r and np is greater than n + 1, contradicting our initial assumption that
(n + 1)r was the closest multiple of n + 1 that was larger than np. Hence 3¢ < p such that (n + 1)q is the
closest larger multiple of n 4+ 1 to np. A

We define a new sequence such that p,, = <= for n > 0. It suffices to show that lim,, . p, exists.
Our lemma implies that the sequence of p,, is a decreasing sequence. We observe that if we constructed

a sequence o, 11 by always rounding v, down to the nearest n, then we must have b, = = < p,. Under this
definition of b,,, we have the recursive definition:

n
bpi1 = | ——b,
i LH 1 J

We can express the floor in terms of the fractional part:

n n
b1 = bn — bn
R EN! {n+1 }

Rearranging:

n n
—b, —byy1 =< ——b,
n+1 + {n+1 }

The fractional part is between 0 (inclusive) and 1 (exclusive). Hence:

n
0< —b,—br1 <1
n—+1 +

The first inequality in the chain yields:

n
bpt1 < ——b,
= n+1

So the sequence of b,, is decreasing. Furthermore, since by > 0, all b,, must be positive as well, so the sequence
of b,, is bounded. Hence, lim,,_, b,, exists.

Since p,, is bounded below by b,, and is also decreasing, lim,, . p, must exist as well, and we are done.
O



