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SOLUTIONS

P1 Solution: We desire some point on the globe such that we converge to
that point by traveling a kilometer south regardless of our longitude. A little
thinking gives us this:

1 km

Figure 1: The South Pole is clearly the only point satisfying the conditions

On the circumference of a particular cross-section that is a little above the South
Pole, our longitude is no longer relevant when we decide to move a kilometer
south, because on that circumference, all souths converge to the South Pole.
Since the ground is obviously snow-covered at the south pole, the answer is

white .

P2 Solution:

A C

B

D

Figure 2: 4ABC is isosceles so 4ABD and 4ACD satisfy ASS but are clearly
not congruent

Suppose we have two triangles that satisfy ASS. All that is required is to find
another pair of congruent angles or sides because both of these alone would
imply that our two triangles also satisfy a valid congruency condition. With an
angle and an opposite side, naturally, we consider the law of sines. Let ∠A, a,
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and b be known in 4ABC. Then:

sin∠A
a

=
sin∠B
b

Solving for ∠B:

∠B = arcsin
b sin∠A

a

But recall that sin (180◦ − θ) = sin θ so we may also have:

∠B = 180◦ − arcsin
b sin∠A

a

This second solution is certainly a possibility for all 4ABC satisfying ∠A −
arcsin b sin∠A

a < 0. Q.E.D.

P3 Solution 1:

Figure 3: A regular tetrahedron

We see that OA = OB = OC = OD = R, the circumradius of the tetrahedron,
and that OH = r, the inradius of the tetrahedron. Because of these equalities,
we deduce:

4OCH ∼= 4OBH ∼= 4ODH
Hence:

CH = BH = DH

It follows that H is the circumcenter of 4BCD. Furthermore, 4BCD is equi-
lateral so H is also the orthocenter of this triangle. Therefore, B, H, and H ′

(the foot of the altitude from B) are all collinear on this altitude.

Letting the side length of the tetrahedron be s, we see that BH ′ = s
√
3

2 . Then,
since H is also the centroid of 4BCD, we have:

HH ′ =
1

3
BH ′ =

s
√

3

6
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Observe that 4CH ′H is right so by the Pythagorean theorem:(s
2

)2
+

Ç
s
√

3

6

å2

= CH2 ⇒ CH =
s
√

3

3

Now we focus on 4AHC.

C H
s
√

3
3

A

s

O

R

R

r

θ

Figure 4: 4AHC

Since 4OAC is isosceles, we have ∠OAC ∼= ∠OCA. Furthermore, 4AHC is
right. Therefore:

sin∠OAC = sin∠OCA =

√
3

3

From this, we compute:

sin θ = sin (180◦ − 2∠OCA) = sin 2∠OCA

We have cos∠OCA =
√
6
3 . Therefore:

sin θ = 2

Ç√
3

3

åÇ√
6

3

å
=

2
√

2

3

This gives us:

cos θ = −1

3

Hence θ = arccos

Å
−1

3

ã
.
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P3 Solution 2: You may have attempted to set up the law of cosines on
4AOC:

s2 = 2R2 − 2R2 cos θ

A little rearrangement yields:

cos θ = 1− s2

2R2

So it suffices to compute s
R . To do this, we follow the steps above up to Figure

4. Then, we observe:

cos∠OCH = cos (∠ACH − ∠ACO) = cos∠ACH cos∠ACO+sin∠ACH sin∠ACO

After some Pythagorean computations, we can make the substitutions:

cos∠OCH =

Ç√
3

3

åÇ√
6

3

å
+

Ç√
6

3

åÇ√
3

3

å
=

2
√

2

3

But 4OCH is right, so we also have cos∠OCH = s
√
3

3R . Now:

s
√

3

3R
=

2
√

2

3
⇒ s

R
=

2
√

6

3

Then, by our work with the law of cosines, we have:

cos θ = 1− s2

2R2
= 1−

Å
1

2

ãÅ
24

9

ã
= −1

3

So we conclude θ = arccos

Å
−1

3

ã
.

P4 Solution: We partition the square into quadrants:

To maximize the distances apart from each other between our first four points,
we choose a unique quadrant for each point. But by the Pigeonhole Principle,
the fifth point is then forced to share a quadrant with the point already in that
quadrant. If M is the set of unattainable distances, then the distance between
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this fifth point and its “quadrant partner” is the desired supM .

The largest distance in a quadrant is its diagonal, which has length

√
2

2
. This

is unattainable as the fifth point goes in the center of the square but its quad-
rant partner must be one of square’s vertices.

P5 Solution: Let the sum at a certain n be Sn. Playing with the sum,
we find that S1 = S2 = − 1

6 which leads us to conjecture Sn = − 1
6 . Induction

seems viable but daunting. Instead, we step back and continue to make some
observations. We first note that the denominator can be factored:

2n3 + 3n2 + n = n(n+ 1)(2n+ 1)

By now, one should be roused. We have already conjectured Sn = − 1
6 and now

we see that the denominator of the summand is n(n+ 1)(2n+ 1). This is very
reminiscent of the well-known sum:

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

It is unclear where to continue with this, but we’ll keep it in the back of our
minds for now.

Next, we see that n(n + 1)(2n + 1) is a constant, so we can pull it out of
the sum:

Sn =
1

n(n+ 1)(2n+ 1)

n∑
k=1

(
2k2 − 2nk − 3k + n+ 1

)
This yields:

Snn(n+ 1)(2n+ 1) =
n∑
k=1

(
2k2 − 2nk − 3k + n+ 1

)
Since we suspect Sn = − 1

6 , we negate both sides of the equation to possibly
force the LHS to be in the familiar sum-of-squares form:

−Snn(n+ 1)(2n+ 1) =
n∑
k=1

(
−2k2 + 2nk + 3k − n− 1

)
If we can show that the RHS is equal to

∑n
k=1 k

2, then we can finish off the
problem. But how can we do this?

We factored the denominator of the summand, so let’s see if the remaining
numerator can be factored:

−2k2 + (2n+ 3)k − (n+ 1)
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This is quadratic in k. We seek factors of 2(n+ 1) that sum to 2n+ 3. This is
trivial.

−(k − n− 1)(2k − 1) = (n+ 1− k)(2k − 1)

Now we have:

−Snn(n+ 1)(2n+ 1) =
n∑
k=1

((n+ 1− k)(2k − 1))

This seems like a good time to start playing around with the sum on the RHS.
WLOG, let n be sufficiently large for the following equation to hold:

n∑
k=1

((n+ 1− k)(2k − 1)) = n+ 3(n− 1) + 5(n− 2) + ...+ 2n− 1

It may not seem like it, but all hope is not lost! We really look at what the sum
is saying:

n∑
k=1

((n+ 1− k)(2k − 1)) = 1 + 1 + 1 + ...+ 1︸ ︷︷ ︸
n times

+ 3 + 3 + 3 + ...+ 3︸ ︷︷ ︸
n−1 times

+...+ 2n− 1︸ ︷︷ ︸
1 time

A little clever rearranging:

n∑
k=1

((n+ 1− k)(2k − 1)) = 1 + (1 + 3) + (1 + 3 + 5) + ...+ (1 + 3 + 5 + ...+ 2n− 1)︸ ︷︷ ︸
n terms

Now hold on. What happens when we add the numbers within the first few
parentheses?

n∑
k=1

((n+ 1− k)(2k − 1)) = 1 + 4 + 9 + ...+ (1 + 3 + 5 + ...2n− 1)

We see sums of squares! What’s going on here? It appears that:

n∑
k=1

(2k − 1) = n2

Indeed this is true. It can be shown in a myriad of ways. Note that it suffices
to show that the difference between the kth square and the (k − 1)th square is
the kth odd number (2k − 1). But this is as trivial as it gets:

k2 − (k − 1)2 = 2k − 1

Which is found by merely expanding the binomial square on the LHS! Therefore:

n∑
k=1

((n+ 1− k)(2k − 1)) = 1 + 4 + 9 + ...+ n2 =
n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
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Finally, we have:

−Snn(n+ 1)(2n+ 1) =
n(n+ 1)(2n+ 1)

6
⇒ Sn = −1

6
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