Here, I will be presenting my solutions to the problems which I have solved from 100 Geometry Problems: Bridging the Gap from AIME to USAMO by David Altizio. This is a compilation that will grow over time.

1. [MA Θ ????] In the figure shown below, circle B is tangent to circle A at X, circle C is tangent to circle A at Y, and circles B and C are tangent to each other. If $A B=6, A C=5$, and $B C=9$, what is $A X$?

Figure 1: Problem 1
Solution: Let $B X=x$ and $C Y=y$. Suppose that the point of tangency between the circles B and C be D. Then, it is known that $A X=A Y, B D=B X$, and $C D=C Y$ as these are radii of their respective circles. Then, we have:

$$
\left\{\begin{array}{l}
x+y=9 \\
x+6=y+5
\end{array}\right.
$$

Solving this system, we find that $x=4$ and $A B+x=6+4=10$.
2. [AHSME ????] In triangle $A B C, A C=C D$ and $\angle C A B-\angle A B C=30^{\circ}$. What is the measure of $\angle B A D$?

Figure 2: Problem 2
Solution: Let $\angle C A D=\theta$ and $\angle D A B=\gamma$. Since $\triangle A C D$ is isosceles, we must have $\angle A D C=\theta$ and it follows that $\angle A C D=180^{\circ}-2 \theta$ and $\angle A D B=180^{\circ}-\theta$. Setting the sum of the angles of $\triangle A B C$ equal to 180°, we find that $\angle A B C=\theta-\gamma$. We are given that $\angle A B C=\theta+\gamma-30^{\circ}$. Setting these two equal yields:

$$
\theta-\gamma=\theta+\gamma-30^{\circ} \Rightarrow \gamma=15^{\circ}
$$

3. [AMC 10A 2004] Square $A B C D$ has side length 2 . A semicircle with diameter $A B$ is constructed inside the square, and the tangent to the semicircle from C intersects side $A D$ at E. What is the length of $C E$?

Solution: Let the center of the semicircle be F and the point of tangency between the semicircle and $\overline{C E}$ be G.

Figure 3: Problem 3
We observe that $\angle C B F=\angle C G F=90^{\circ}$, and $F B=F G$, so $\triangle C G F \cong \triangle C B F$ and $C G=C B=2$.
Next, we see that $E G^{2}=E A^{2}$, the power of point E with respect to the semicircle, hence $E G=E A$. Let us call this length x. It follows that:

$$
\begin{aligned}
& C E=x+2 \\
& D E=2-x
\end{aligned}
$$

Now we finish by the Pythagorean Theorem on $\triangle C D E$:

$$
4+(2-x)^{2}=(x+2)^{2}
$$

This has the solution $x=\frac{1}{2}$, hence $C E=\frac{1}{2}+2=\frac{5}{2}$.
4. [AMC 10B 2011] Rectangle $A B C D$ has $A B=6$ and $B C=3$. Point M is chosen on side $A B$ so that $\angle A M D=\angle C M D$. What is the degree measure of $\angle A M D$?

Solution:

Figure 4: Problem 4
Let $\angle A M D=\angle C M D=\theta$. Then, since $\triangle A M D$ is right, we have $\angle A D M=90^{\circ}-\theta$, from which it follows, $\angle C D M=\theta$. Since $\angle C D M=\angle C M D=\theta, \triangle C D M$ is isosceles.

This means that $C M=6$, which makes $\triangle B C M$ a right triangle with a leg of 3 and a hypotenuse of 6 , implying that it is a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with $\angle B C M=60^{\circ}$. We continue the angle chase: $\angle D C M=180^{\circ}-2 \theta$ and $\angle B C M=2 \theta-90^{\circ}$. Now:

$$
2 \theta-90^{\circ}=60^{\circ} \Rightarrow \theta=75^{\circ}
$$

5. [AIME 2011] On square $A B C D$, point E lies on side $A D$ and point F lies on side $B C$, so that $B E=E F=F D=30$. Find the area of the square.

Solution: Let G be the foot of the altitude from F to $\overline{A D}$.

Figure 5: Problem 5
By symmetry, $\triangle A B E \cong \triangle C D F$. Since $G F=A B$ and $E F=E B$, we must also have $\triangle A B E \cong \triangle G F E$ by HL congruence. From this it follows:

$$
A E+E G+G D=3 A E=A D
$$

Letting x be the side length of the square, we apply the Pythagorean Theorem to $\triangle A B E$:

$$
\frac{x^{2}}{9}+x^{2}=900
$$

Which yields $x^{2}=810$.
6. Points A, B, and C are situated in the plane such that $\angle A B C=90^{\circ}$. Let D be an arbitrary point on $\overline{A B}$, and let E be the foot of the perpendicular from D to $\overline{A C}$. Prove that $\angle D B E=\angle D C E$.

Solution: This doesn't deserve a diagram. $\angle C E D=\angle C B D=90^{\circ}$ and quadrilateral $C B D E$ is cyclic.
7. [AMC 10B 2012] Four distinct points are arranged in a plane so that the segments connecting them have lengths $a, a, a, a, 2 a$, and b. What is the ratio of b to a ?

Solution: Suppose that the points are A, B, C, and D. First, we consider a rhombic configuration. Suppose, WLOG, that $A B=B C=C D=A D=a$. This leaves the diagonals of the rhombus, $A C$ and $B D$ to be the lengths $2 a$ and b. WLOG, suppose that $A C=2 a$. However, by the triangle inequality on $\triangle A B C$, we must have $A C>2 a$, contradiction.

This then forces $\triangle A B C$ into degeneracy, causing A, B, and C to be collinear. We complete the configuration by placing D such that (WLOG) $\triangle A B D$ is equilateral.

Figure 6: In this configuration, $A B=B C=A D=B D=a, A C=2 a$, and $C D=b$.
Now that we have our configuration, the rest is a computation. Since $\angle A B D=60^{\circ}$, we have $\angle C B D=$ 120°. Now, by the Law of Cosines on $\triangle B C D$, we have:

$$
b^{2}=2 a^{2}-2 a^{2} \cos 120^{\circ} \Rightarrow b^{2}=3 a^{2}
$$

From which it follows, $\frac{b}{a}=\sqrt{3}$.
8. [Britain 2010] Let $A B C$ be a triangle with $\angle C A B$ a right angle. The point L lies on the side $B C$ between B and C. The circle $B A L$ meets the line $A C$ again at M and the circle $C A L$ meets the line $\overleftrightarrow{A B}$ again at N. Prove that L, M, and N lie on a straight line.

Solution: We employ phantom points. Let the extension of $\overline{M L}$ intersect the extension of $\overline{A B}$ at N^{\prime}. It suffices to show that $N^{\prime}=N$.

Figure 7: It suffices to show that $N^{\prime}=N$
Let $\angle A C B=\theta$. Then, $\angle A B C=90^{\circ}-\theta$. Since quadrilateral $A B L M$ is cyclic, $\angle A M L=90^{\circ}+\theta$. This makes $\angle A M N=90^{\circ}-\theta$ and since $\triangle A M N$ is a right triangle, $\angle A N L=\theta$.

Since $\angle A N L=\angle A C L=\theta$, quadrilateral $A L C N$ is cyclic, and $N^{\prime}=N$ as desired.
9. [OMO 2014] Let $A B C$ be a triangle with incenter I and $A B=1400, A C=1800, B C=2014$. The circle centered at I passing through A intersects line $B C$ at points X and Y. Compute the length $X Y$.

Solution: We draw the incircle of $\triangle A B C$. Let D be the point of tangency between the incircle and $\overline{B C}$ and let F be similarly defined but for side $\overline{A B}$.

Figure 8: Problem 9
We use a lemma to compute $A F$. In particular, this lemma states that:

$$
A F=s-B C
$$

Where $s=2607$ is the semiperimeter of $\triangle A B C$. This lemma is easily proven by setting up a system of equations with the portions of the sides of $\triangle A B C$ formed by the contact triangle. Hence, $A F=593$. By Heron's formula:

$$
[A B C]=\sqrt{2607 \cdot 593 \cdot 1207 \cdot 807}=3 \sqrt{167314669511}
$$

Let $r=I F$, the inradius. Then, this is also equal to $r s$. Hence, $r=\frac{\sqrt{167314669511}}{869}$. Then by the Pythagorean theorem on $\triangle A F I$,

$$
A I=\sqrt{593^{2}+\frac{167314669511}{869^{2}}}=\frac{200 \sqrt{10821657}}{869}
$$

This is a radius of the larger circle along with $\overline{X I}$ and $\overline{Y I}$. By the Pythagorean theorem on $\triangle X D I$:

$$
X D=\sqrt{\left(\frac{200 \sqrt{10821657}}{869}\right)^{2}-\frac{167314669511}{869^{2}}}=593
$$

And finally:

$$
X Y=2 X D=1186
$$

10. [India RMO 2014] Let $A B C$ be an isosceles triangle with $A B=A C$ and let Γ denote its circumcircle. A point D is on arc $A B$ of Γ not containing C. A point E is on $\operatorname{arc} A C$ of Γ not containing B. If $A D=C E$ prove that $B E$ is parallel to $A D$.

Solution:

Figure 9: Problem 10
Since $\triangle A B C$ is isosceles, $\overparen{A B}=\overparen{A C}$. Furthermore, $A D=C E$, hence $\overparen{A D}=\overparen{C E}$, and $\overparen{B D}=\overparen{A B}-\overparen{A D}=$ $\widehat{A C}-\widehat{C E}=\widehat{A E}$. This implies $\angle B A D=\angle A D E$.

But $\angle A D E=\angle A B E$ because $A D B E$ is cyclic and we are done.
11. A closed planar shape is said to be equiable if the numerical values of its perimeter and area are the same. For example, a square with side length 4 is equiable since its perimeter and area are both 16 . Show that any closed shape in the plane can be dilated to become equiable. (A dilation is an affine transformation in which a shape is stretched or shrunk. In other words, if \mathcal{A} is a dilated version of \mathcal{B} then \mathcal{A} is similar to $\mathcal{B})$.

Solution: Some of the basic properties of a homothety with scale factor k are that distances between two points on the figure will be scaled by k, and hence if the figure is closed, the area will be scaled by k^{2}. Suppose P and A are the perimeter and area respectively of a closed planar shape. Then we wish to apply a homothety with scale factor k such that:

$$
k^{2} A=k P
$$

Therefore, there exists a class of homotheties, namely those with scale factor $k=\frac{P}{A}$, or the degenerate case of $k=0$ (which is also a solution to the equation above), that maps every closed planar shape to a similar one that is equiable.
12. [David Altizio] Triangle $A E F$ is a right triangle with $A E=4$ and $E F=3$. The triangle is inscribed inside square $A B C D$ as shown. What is the area of the square?

Figure 10: Problem 12
Solution: $A F=5$. We have $\angle C E F=180^{\circ}-90^{\circ}-\angle A E B=90^{\circ}-\angle A E B$, hence $\triangle A B E \sim \triangle E C F$. Hence:

$$
\frac{B E}{4}=\frac{C F}{3} \Rightarrow C F=\frac{3}{4} B E
$$

Let s be the side length of the square, and let $x=B E$. Then, by the Pythagorean theorem on $\triangle A D F$:

$$
s^{2}+\left(s-\frac{3}{4} x\right)^{2}=25
$$

By the Pythagorean theorem on $\triangle A B E$:

$$
s^{2}+x^{2}=16
$$

Solving this system yields $s^{2}=\frac{256}{17}$.
13. Points A and B are located on circle Γ, and point C is an arbitrary point in the interior of Γ. Extend $\overline{A C}$ and $\overline{B C}$ past C so that they hit Γ at M and N respectively. Let X denote the foot of the perpendicular from M to $\overline{B N}$, and let Y denote the foot of the perpendicular from N to $\overline{A M}$. Prove that $\overline{A B} \| \overline{X Y}$.

Solution:

Figure 11: Problem 13
We observe that $\angle B A M=\angle B N M$ as both open up to the same arc. Let this angle be α. Next, we observe that since $\triangle M X N$ is a right triangle, we must have $\angle X M N=\angle 90^{\circ}-\alpha$. Furthermore, since $\angle N Y M=\angle M X N=90^{\circ}, M N Y X$ is cyclic. Hence:

$$
\angle N Y X+\angle N M X=180^{\circ} \Rightarrow \angle N Y X=90^{\circ}+\alpha
$$

And since $\angle N Y M=90^{\circ}$, we must have $\angle C Y X=\alpha$. Using a similar argument, or by summing the angles in $\triangle C Y X$, we can deduce $\angle C X Y=\angle C B A$.

Hence, $\overline{A B} \| \overline{X Y}$.
14. [AIME 2007] Square $A B C D$ has side length 13 , and points E and F are exterior to the square such that $B E=D F=5$ and $A E=C F=12$. Find $E F^{2}$.

Solution: We let the foot of the altitude from E be X. Observe that $(5,12,13)$ is a Pythagorean triple, so $\triangle A E B$ and $\triangle C F D$ are right triangles. Then, the area of $\triangle A E B$ is given by:

$$
[\triangle A E B]=\frac{1}{2} \cdot 5 \cdot 12=\frac{1}{2} \cdot 13 \cdot E X \Rightarrow E X=\frac{60}{13}
$$

From this, we use the Pythagorean theorem on $\triangle E X B$ to compute $B X=\frac{25}{13}$. Hence, the vector $\mathbf{E F}$ is given by:

$$
\mathbf{E F}=\left\langle 2 \cdot \frac{25}{13}, 13+2 \cdot \frac{60}{13}\right\rangle=\left\langle\frac{50}{13}, \frac{289}{13}\right\rangle
$$

And:

$$
E F^{2}=\frac{2500+83521}{169}=509
$$

15. Let Γ be the circumcircle of $\triangle A B C$, and let D, E, F be the midpoints of arcs $A B, B C, C A$ respectively. Prove that $\overline{D F} \perp \overline{A E}$.

Solution:

Figure 12: Problem 15
We let $X=\overline{A B} \cap \overline{D F}, Y=\overline{A C} \cap \overline{D F}$, and $Z=\overline{A E} \cap \overline{D F}$.
Since $\overparen{B E}=\overparen{C E}, \angle B A E=\angle C A E$. Furthermore, $\angle A Y Z=\frac{1}{2}(\overparen{A D}+\overparen{C F})$ and $\angle A X Z=\frac{1}{2}(\overparen{B D}+\overparen{A F})$. But $\overparen{A D}=\overparen{B D}$ and $\overparen{A F}=\overparen{C F}$, so $\angle A X Z=\angle A Y Z$.

This establishes $\triangle A Z X \sim \triangle A Z Y$, from which it follows $\angle A Z X=\angle A Z Y$.
16. [AIME 1984] In tetrahedron $A B C D$, edge $A B$ has length 3 cm . The area of face $A B C$ is $15 \mathrm{~cm}^{2}$ and the area of face $A B D$ is $12 \mathrm{~cm}^{2}$. These two faces meet each other at a 30° angle. Find the volume of the tetrahedron in cm^{3}.

Solution: Cavalieri's principle implies that we may shift the apex A to any location and preserve the volume of $A B C D$ as long as the distance from A to the plane $B C D$ is preserved. So let us shift A such that $A B=h$, the height of the tetrahedron. In this case, $\angle A B C=\angle A B D=90^{\circ}$, since $\overline{A B}$ must be perpendicular to the plane $B C D$. We have:

$$
[\triangle A B C]=\frac{1}{2} \cdot 3 \cdot B C=15
$$

And:

$$
[\triangle A B D]=\frac{1}{2} \cdot 3 \cdot B D=12
$$

From these we obtain $B C=10$ and $B D=8$, respectively. Now the area $\triangle B C D$ is given by:

$$
[\triangle B C D]=\frac{1}{2} \cdot 15 \cdot 12 \sin 30^{\circ}=45
$$

And the volume of $A B C D$ is thus $\frac{1}{3}[\triangle B C D] h=\frac{1}{3} \cdot 3 \cdot 45=45 \mathrm{~cm}^{3}$.
17. Let $P_{1} P_{2} P_{3} P_{4}$ be a quadrilateral inscribed in a circle with diameter of length D, and let X be the intersection of its diagonals. If $\overline{P_{1} P_{3}} \perp \overline{P_{2} P_{4}}$ prove that

$$
D^{2}=X P_{1}^{2}+X P_{2}^{2}+X P_{3}^{2}+X P_{4}^{2}
$$

Solution: Let the center of the circle be O and let the diameter through P_{1} intercept the circle a second time at Y.

Figure 13: Problem 17
We observe that $\angle Y P_{2} P_{1}=\angle Y P_{3} P_{1}=90^{\circ}$, since both angles open up to a diameter. Since $\angle Y P_{3} P_{1}=$ $\angle P_{4} X P_{1}$, we must have $\overline{Y P_{3}} \| \overline{P_{4} P_{2}}$.

Since these two segments are parallel, $\angle P_{2} P_{4} P_{3}=\angle Y P_{3} P_{4}$. But since $Y P_{3} P_{2} P_{4}$ is cyclic, we also have $\angle Y P_{3} P_{4}=\angle Y P_{2} P_{4}$. Furthermore, $\angle Y P_{4} P_{3}=\angle Y P_{2} P_{3}$ since $Y P_{3} P_{2} P_{4}$ is cyclic. This means that:

$$
\angle Y P_{4} P_{2}=\angle Y P_{4} P_{3}+\angle P_{2} P_{4} P_{3}=\angle Y P_{2} P_{3}+\angle Y P_{2} P_{4}=\angle P_{3} P_{2} P_{4}
$$

Since $\overline{Y P_{3}} \| \overline{P_{4} P_{2}}$ and $\angle Y P_{4} P_{2}=\angle P_{3} P_{2} P_{4}$, quadrilateral $Y P_{3} P_{2} P_{4}$ is an isosceles trapezoid. The diagonals are then equal in length:

$$
Y P_{2}=P_{3} P_{4}
$$

By the Pythagorean theorem on $\triangle Y P_{2} P_{1}$ and the above equality:

$$
D^{2}=Y P_{2}^{2}+P_{1} P_{2}^{2}=P_{3} P_{4}^{2}+P_{1} P_{2}^{2}
$$

By the Pythagorean theorem on $\triangle P_{1} X P_{2}$ and $\triangle P_{3} X P_{4}$, we find $P_{1} P_{2}^{2}=X P_{1}^{2}+X P_{2}^{2}$ and $P_{3} P_{4}^{2}=X P_{3}^{2}+$ $X P_{4}^{2}$, respectively. Hence the equation above may be written as:

$$
D^{2}=X P_{1}^{2}+X P_{2}^{2}+X P_{3}^{2}+X P_{4}^{2}
$$

As desired.
18. [iTest 2008] Two perpendicular planes intersect a sphere in two circles. These circles intersect in two points, A and B, such that $A B=42$. If the radii of the two circles are 54 and 66 , find R^{2}, where R is the radius of the sphere.

Solution: Suppose circle Γ has radius 54 with center G and circle Λ has radius 66 with center L. Let the foot of the altitude from G to $\overline{A B}$ be H (the midpoint of $\overline{A B}$). Let the center of the sphere be O. Then, by the Pythagorean theorem on $\triangle G H A$:

$$
21^{2}+G H^{2}=54^{2} \Rightarrow G H^{2}=2475
$$

By the Pythagorean theorem on $\triangle L H A$:

$$
21^{2}+L H^{2}=66^{2} \Rightarrow L H^{2}=3915
$$

By the Pythagorean theorem on $\triangle O G H$:

$$
O H^{2}=2475+3915=6390
$$

By the Pythagorean theorem on $\triangle O H A$:

$$
R^{2}=21^{2}+6390=6831
$$

19. AIME [2008] In trapezoid $A B C D$ with $\overline{B C} \| \overline{A D}$, let $B C=1000$ and $A D=2008$. Let $\angle A=37^{\circ}$, $\angle D=53^{\circ}$, and M and N be the midpoints of $\overline{B C}$ and $\overline{A D}$, respectively. Find the length $M N$.

Solution: Let the length from A to the foot of the altitude from B to $\overline{A D}, P$, be a and let the length from D to the foot of the altitude from C to $\overline{A D}, Q$, be d. Let the lengths of those altitudes be h. Let X be the altitude from M to $\overline{A D}$. Then:

$$
a=\frac{h}{\tan 37^{\circ}}
$$

And:

$$
d=\frac{h}{\tan 53^{\circ}}=h \tan 37^{\circ}
$$

From these we obtain $a d=h^{2}$. Furthermore, $a+d=2008-1000=1008$, hence:

$$
\frac{h}{\tan 37^{\circ}}+h \tan 37^{\circ}=1008
$$

From this we obtain:

$$
h=\frac{1008}{\tan 37^{\circ}+\cot 37^{\circ}}=\frac{1008 \tan 37^{\circ}}{\sec ^{2} 37^{\circ}}=1008 \sin 37^{\circ} \cos 37^{\circ}=504 \sin 74^{\circ}
$$

Using the second expression for h above, we quickly find $a=1008 \cos ^{2} 37^{\circ}$.

We have $X P=500$ and $N P=1004-a$ so $X N=a-504=504-1008 \cos ^{2} 37^{\circ}$. By the Pythagorean theorem on $\triangle M X N$:

$$
\begin{aligned}
M N^{2} & =\left(504-1008 \cos ^{2} 37^{\circ}\right)^{2}+504^{2} \sin ^{2} 74^{\circ} \\
& =1008^{2} \cos ^{4} 37^{\circ}-1008^{2} \cos ^{2} 37^{\circ}+504^{2} \sin ^{2} 74^{\circ}+504^{2} \\
& =1008^{2} \cos ^{2} 37^{\circ}\left(\cos ^{2} 37^{\circ}-1\right)+504^{2} \sin ^{2} 74^{\circ}+504^{2} \\
& =-1008^{2} \cos ^{2} 37^{\circ} \sin ^{2} 37^{\circ}+504^{2} \sin ^{2} 74^{\circ}+504^{2} \\
& =-504^{2} \sin ^{2} 74^{\circ}+504^{2} \sin ^{2} 74^{\circ}+504^{2} \\
& =504^{2}
\end{aligned}
$$

Hence $M N=504$.

